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Abstract 

Three types of polymer based materials with different modifications of carbon nano fillers 
were tested in experimental program on creep at various loading level and on quasistatic  
loading. The creep data is used to develop a model to describe the relationship between time,  
stress and strain. To this end, Volterra’s equation of second type is employed with Rabotnov’s  
kernel.

With  the  use  of  the  Rabotnov's  kernel  comes  the  need  to  obtain  material-dependent 
parameters associated with the kernel. The standard least squares approach for parameter  
estimation requires expensive and error-prone function evaluations. However, the Laplace-
Carson transform of the Volterra equation with Rabotnov’s kernel has a simple and elegant  
form. This allows for the development of  a methodology for obtaining optimal parameter  
estimates  referred  to  as  Laplace-Carson  optimization.  The  obtained  material-dependent  
parameter  estimates  based  on  this  approach  are  shown  to  fit  experimental  data  well.  
Questions of sensitivity analysis associated with Laplace-Carson optimization are introduced  
and scoped for future work.

1 Introduction 

Materials  having  the  viscoelastic  property  respond to  stress  in  such  a  manner  that  stress 
applied in the past affects strain in the present time t. The introduction of time dependence or 
memory effect leads to the analysis of Volterra’s equation of second type [1-2] to model the 
relationship between stress as a functional of strain

)())(( tMt =εϕ                                                                  (1)

where ϕ(ε(t)) is a response functional of ε (the so-called instantaneous loading diagram) and 
M(t) models the material stress resulting from the memory effect and is taken to have form
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In practice, equation (1) describes the relations between time, stress and strain successfully 
for a wide range of materials such as polymers, metals, and composites [2-4].

The most suitable kernel K(t) is based on the exponential of arbitrary order function [2] taking 
the form
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The exponential of arbitrary order operators combine several important features [2,5].
1) The initial moment singularity at t = 0 is integratable.
2) The asymptotic exponential behavior with t → ∞.
3) The resolvent operator is the same type of exponential of arbitrary order with different 

set of defining parameters.

Using the kernel given in (3) together with the assumption that  σ(t) := σ is a fixed known 
constant, the integral of (2) can be evaluated, and so (2) becomes
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In order to use model (4), material-specific kernel parameter values P = {λ, α, β} are required 
that  lead  as  closely  as  possible  to  the  realization  of  equation  (1).  The  parameter  α is 
determined a priori [4]. Thus, only β and λ need to be treated as unknown values that need to 
be determined through optimization techniques. To underscore the dependence of M(t) on the 
values of β and λ, the model M(t) is now denoted as Mβ,λ(t).

The parameters P = {λ,  α,  β} associated with (4) are material  specific and so need to be 
estimated  for  each material.  This  is  usually accomplished  with the formulation  of a  least 
squares problem whose optimal solutions correspond to the parameter estimates that minimize 
least  square  deviation  of  model  (4)  against  experimental  strain  observations.  Due  to  the 
expensive and error-prone nature of evaluating a model of form (4), this  work presents a 
means  of  obtaining  parameter  estimates  by  formulating  a  linear  least  squares  problem 
constructed from the Laplace transform of equation (1). This approach is demonstrated on 
nine data sets corresponding to three materials each tested over three different loading levels. 
The experimental strain observations are taken for the materials: 

1) Pure polyamide polymer (PA), 
2) Polyamide polymer with carbon nano fillers (PA+UDD), and 
3) Polyamide polymer with ultradispersed diamonds (PA+CNT).

Details on the experimental program are given in [6]. For each of the three materials, creep 
testing was performed at 30%, 40%, and 50% of ultimate stress level. Using the experimental 
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creep observations, the experimentally determined value of  α, and estimates of  ϕ(ε(t)) also 
obtained through experiment, optimal parameter estimates for unknown parameters  β and λ 
are to be determined for each data set.

2 Obtaining Optimal Parameter Estimates with the Application of the Laplace-Carson 
Transform (LCT)

The optimal parameter estimates that most closely enforce equation (1) are normally obtained 
using standard nonlinear optimization techniques [7-8] for least squares problems. The least 
square formulation is given by
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where εi denotes the experimental strain data. It was shown in [9] that difficulties arising from 
approximating  the  value  of  the  infinite  sum  of  Mβ,λ(t) include  the  computational 
expensiveness,  determining  where  to  truncate  the  sum  and  avoiding  the  potential  for 
catastrophic cancellation. To address these issues, a linear least squares problem is formulated 
by applying the Laplace-Carson transform to both sides of equation (1).

The values ϕ(εi) may be fit with interpolating function I(t). When I(t) is substituted for ϕ(εi), 
equation (1) becomes

)()( , tMtI λβ=                                                               (5)

Let L{⋅} denote the operation of taking the Laplace transform. Then LI(s) := s⋅L{I(t)} is the 

LCT of I(t) and LMβ,λ(s) := s⋅L{Mβ,λ(t)} = 
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s
 is the LCT of Mβ,λ(t).

Apply the Laplace-Carson transform to both sides of equation (5) to obtain

.0)Re(for             )()( , >= ssLMsLI λβ                                         (6)

The LCT variable s is taken from the set of complex numbers for which Re(s) > 0. Define this 
set H := {s ∈ C | Re(s) > 0} as the domain over which LMβ,λ(s) is defined. The following facts 
taken from the theory of complex analysis [10] justify the use of equation (6) to get optimal 
parameter estimates.

1. The transforms LMβ,λ(s) and LI(s) define analytic complex functions over s ∈ H.
2. An analytic function is uniquely determined by its output values on an open subset 

S ⊂ H, or over a line extending infinitely in both directions contained in  H (i.e., a 
vertical line).

3. An inverse  to  LMβ,λ(s)  exists,  and,  for  current  purposes  (see  discussion  preceding 
Theorem 7  of  Section  64  from [10]  for  more  details),  this  is  given  uniquely  by 
L-1{ LMβ,λ(s)}= Mβ,λ(t).
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From these three facts, it follows that if equation (6) can be satisfied over some open subset 
S ⊂ H for a given choice of β and λ, then the uniqueness of the inverse transforms would give 
a corresponding satisfaction of equation (5) in the t domain.

To enforce consistency of equation (6) over an open subset S ⊂ H, we enforce the equations

,( ) ( ),             for all .i i iLI s LM s s Sβ λ= ∈   (7)

as closely as possible with an optimal choice of β and λ. In practice, equations of form (7) are 
considered only for some finite sample SN ⊂ S of N values si ∈ SN. Once SN ⊂ S is determined, 
the following least squares problem in the s domain is given.
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The open subset S ⊂ H should be chosen so that LI(s) and LMβ,λ(s) can be easily and reliably 
computed for each si ∈ SN ⊂ S. The least squares problem (8) can be formulated as a linear 
least  squares  problem  when  the  decision  variables  are  β and  λ.  This  allows  for  easy 
computation of the optimal parameter values β and λ.

3. Results of Numerical Procedures for Optimal Parameter Estimates

In order to formulate optimization problem (8) for each data set, the following need to be 
determined.
1. An interpolating function I(t).
2. An open region S ⊂ H and a finite sample set SN ⊂ S to suitably approximate S ⊂ H.

Regression Functions: In the past, power regressions have been used for the interpolating 
function I(t) [9]. In this work, regressions functions having form
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are found to fit experimental creep data better while having a readily available closed-form 
LCT. The values ai ∈ (0,1), aj ∈ (0,1) are fixed, finite in number, and customized for each 
data set. Once ai and aj are fixed, the coefficients ci, cj are determined using standard 
techniques of linear regression. The interpolating functions I(t) are given for each data set in 
Sections 3.1-3.3. 

Sample Regions: The sampled regions  SN ⊂ S ⊂ H that  tend to yield the best parameter 
estimates from (8) are those regions that are non-elongated such as squares, hexagons, and 
circles. (Lines, or highly elongated shapes do not work as well). The sample region used for 
(8) in this work is an open hexagonal region approximated by the values si ∈ SN ⊂ S that are 
spaced according to a triangular lattice as depicted in Figure 1.
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Figure 1. Sample region SN ⊂ S. The individual si ∈ SN are depicted with the dots

Subsections 3.1, 3.2, and 3.3 give problem setup information and parameter estimate results 
for the three materials. For each material, problem setup information refers to the following:
1) The same sample region SN depicted in Fig.1 is used for every data set.
2) The experimentally determined value of α is stated for each material.
3) The loading level values σ0.3, σ0.4 and σ0.5 are stated for each material.
4) For each material, the function ϕ(ε) takes linear form ϕ(ε) := Eε, and the value E is stated.
5) Interpolating function I(t) is stated for each data set.

Once the necessary problem setup information is available, the linear least square solution for 
each material and loading level specific manifestation of (8) is obtained using the Maple 14 
routine LinearAlgebra[LeastSquares] via QR decomposition. These values are given in the 
results that follow. Lastly, plots are shown giving a comparison of the experimental data, the 
interpolating function, and the model Mβ,λ(t) resulting from the optimal parameter estimates.

3.1. Pure Polyamide (PA)

The non-decision parameter values associated with pure polyamide (PA) are as follows. The 
parameter  α is  estimated  as  α =  0.83.  The  parameter  E associated  with  the  functional 
ϕ(ε) := Eε is determined as E = 955. The loading levels are defined as σ0.3 = 16.20,             σ0.4 

= 21.60, and σ0.5 = 27.00.

Table  1  gives  the  interpolating  functions  I(t)  associated  with  each  data  set,  and  also  the 
optimal parameter estimates obtained. Fig. 2 gives plots depicting wellness of fit for model 
Mβ,λ(t) with the experimental and interpolated data.

Interpolating Functions Optimal Parameter Estimates
Loading Level I(t) = β λ

σ0.3 36.03955 t0.1 − 30.81646 t0.0667 + 6.13278 t0.05 0.07665 672.94332
σ0.4 2.47000 t0.2 + 31.31428 t0.1 − 19.69854 t0.05 0.01945 605.73805
σ0.5 9.47225 t0.2 + 19.43801 t0.1 − 11.84635 t0.05 -0.02715 556.69281

Table 1. Interpolating functions and optimal parameter estimates for pure polyamide (PA)
Wellness of fit for pure polyamide PA using LCT to obtain optimal parameters β and λ

model interpolated data experimental data
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strain ε (%)

loading level: σ0.3                               time t (seconds)

strain ε (%)

loading level: σ0.4                            time t (seconds)
strain ε (%)

loading level: σ0.5                             time t (seconds)

strain ε (%)

loading levels: σ0.3,σ0.4,σ0.5               time t (seconds)

Figure 2. Results for pure polyamide (PA)

3.2. PA+UDD 

The non-decision parameter values associated with polyamide (PA+UDD) are as follows. The 
parameter  α is  estimated  as  α =  0.83.  The  parameter  E associated  with  ϕ(ε) := Eε is 
determined as E = 1008. Loading levels are σ0.3 = 15.90, σ0.4 = 21.20, and σ0.5 = 26.50.

Table  2  gives  the  interpolating  functions  I(t)  associated  with  each  data  set,  and  also  the 
optimal parameter estimates obtained as optimal solutions to (8).

Interpolating Functions Optimal Parameter Estimates
Loading Level I(t) = β λ

σ0.3 2.91939 t0.2 + 16.79958 t0.1  − 9.30827 t0.05 0.02695 633.37560
σ0.4 26.28460 t0.125 − 13.06354 t0.0625 0.01340 607.21216
σ0.5 34.46006 t0.125 − 18.58995 t0.0625 -0.00403 580.75753

Table 2. Interpolating functions and optimal parameter estimates for polyamide (PA+UDD)

Fig.3  gives  plots  depicting  wellness  of  fit  of  model  Mβ,λ(t)  with  the  experimental  and 
interpolated data.

Wellness of fit for polyamide PA+UDD using LCT to obtain optimal parameters β and λ
model interpolated data experimental data

strain ε (%)

Loading level: σ0.3                         time t (seconds)

strain ε (%)

Loading level: σ0.4                          time t (seconds)
strain ε (%)

Loading level: σ0.5                           time t (seconds)

strain ε (%)

Loading levels: σ0.3,σ0.4,σ0.5            time t (seconds)

Figure 3. Results for polyamide (PA + UDD)

3.3. PA+CNT. 

6



ECCM15 - 15TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012

The non-decision parameter values associated with polyamide (PA+CNT) are as follows. The 
parameter α is estimated as α = 0.83. The parameter E associated with the functional
ϕ(ε) := Eε is determined as E = 1320. The loading levels are defined as σ0.3 = 18.72, σ0.4 = 
24.96, and σ0.5 = 31.20.

Table  3  gives  the  interpolating  functions  I(t)  associated  with  each  data  set,  and  also  the 
optimal parameter estimates obtained as optimal solutions to (8). Fig. 4 gives plots depicting 
wellness of fit of model Mβ,λ(t) with the experimental and interpolated data.

Interpolating Functions Optimal Parameter Estimates
Loading Level I(t) = β λ

σ0.3 5.68600 t0.2 + 3.11726 t0.1 -0.00861 562.88010
σ0.4 113.44063 t0.0667 − 102.36318 t0.05 0.03109 605.66604
σ0.5 7.13975 − 7.13368 e-0.05t + 141.34010 t0.0625 − 129.24869 t0.05 0.00687 588.96000

Table 3. Interpolating functions and optimal parameter estimates for polyamide (PA+CNT)

Wellness of fit for polyamide PA+CNT using LCT to obtain optimal parameters β and λ
model interpolated data experimental data

strain ε (%)

Loading level: σ0.3                              time t (seconds)

strain ε (%)

Loading level: σ0.4                             time t (seconds)
strain ε (%)

Loading level: σ0.5                              time t (seconds)

strain ε (%)

Loading levels: σ0.3,σ0.4,σ0.5                 time t (seconds)

Figure 4. Results for polyamide (PA + CNT)

4. Concluding Remarks

As seen in the plots in Figs. 2-4, most of the parameters obtained for each material and each 
loading level yield creep models that fit the interpolating function well. The exception seems 
to be the material PA+CNT with loading level σ0.5. It is unclear whether this is because of a 
poorly chosen sample region SN for this material and loading level, or if the model Mβ,λ(t) is 
simply not able to fit the trend of the data well. 

This work introduces the methodology of converting a difficult problem of finding optimal 
parameter estimates in the t domain into an alternative optimal parameter estimate problem in 
the Laplace transform s domain. The theoretical equivalence of the two problems is inferred 
from  complex  analysis  theory  presented  in  [10].  For  the  model  and  experimental  cases 
considered,  the Laplace transform optimization technique described in this  work produces 
parameter estimates that fit the interpolated experimental data well. 
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Although the theoretical foundation is available for the use of Laplace transform optimization, 
there are practical computation questions that need further research. Numerical difficulty can 
arise from many sources when applying Laplace transform optimization. The first potential 
source of numerical difficulty arises from the computation of linear least squares. If the linear 
least squares problem is ill-conditioned, then slight change in the input data can result in great 
change  in  the  optimal  parameters  and  in  the  wellness  of  fit  associated  with  optimal 
parameters.  Details  on this  subject,  and techniques  for  transforming the variable  space to 
improve conditioning of the linear least squares problem are given in Section 4.4 of [11].  

When equation (7) in the s domain is not perfectly satisfied for si ∈ SN for a given β and λ, the 
degree to which equation (5) in the t domain is not satisfied for the same β and λ is uncertain. 
The degree to which equation (5) is not satisfied seems to depend strongly on the choice of 
sampling region SN used to set up problem (8). If the inverse LCT is thought of as a mapping 
taking in a function valued object in the  s domain and outputting another function in the  t 
domain, a notion of continuity of the inverse LCT (in terms of a function metric) is what 
allows for the possibility that (7) being “almost” satisfied means that (5) is “almost” satisfied. 
It is this notion of continuity that needs to be developed in future work.
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