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Abstract 
The optimization problems of maximizing the (lowest) buckling eigen value of composite plate 
due to layer orientations are considered. The corresponding optimality conditions for 
orthotropic/anisotropic plates with symmetric lay-up are studied. It is demonstrated that the 
bending-twisting coupling terms and the twisting moment in the principal curvature axes play 
important role in the optimality. In particular, for both orthotropic and anisotropic plates in 
case of local orientation optimization the twisting moment is equal to zero in non-umbilical 
points. The condition is valid “in average” in case of layer orientation angles independent of 
location at the plate. Numerical example of long composite plate under shear is presented 
and analyzed. It is demonstrated that proper choice of layer orientations leads to 
considerable raise of buckling level regardless of the loading direction.    

 
 

1 Introduction 
The investigation of anisotropic structures began in 30-ties of the last century, by numerous 
works devoted to plywood structures used in airplanes (see, for example, [1]). Investigating 
the structural stability important for the applications, it was identified that the bending-
twisting terms in the buckling equation play an important role, especially in case of shear 
buckling.  
With appearance of composites or fiber-reinforced polymers like CFRP (carbon fiber-
reinforced polymer) or GFRP (glass fiber-reinforced polymer) and their wide application into 
aerospace, marine and civil structures the behavioral peculiarities of composite structures 
attracted a lot of attention of researches and engineers. During the last more than two decades 
a considerable number of papers dealt with buckling of composite plates subjected to 
compression and /or shear. It was identified that the problems were highly dependent on layer 
lay-up [2].  
From the very appearance of composite structures the researchers investigated the 
corresponding structural optimization problems. In many papers the attention was paid to lay-
up optimization of composite plates under buckling conditions. The majority of papers are 
devoted to numerical FEM-based approaches, with some attempts to use semi-analytical or 
analytical formulas. In such papers the search of optimum is made numerically, using genetic 
algorithms or other approaches.  
Among papers considering some theoretical sides of the problem we mention [3]. As a paper 
devoted to the fibre orientations maximizing shear buckling load, with account of bending-
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twisting coupling, we indicate [4], containing important numerical results. The more 
comprehensive review may be found in [5]. 

The present paper is devoted to peculiarities of anisotropy/orthotropy optimization of 
composite plates under buckling conditions, in particular, under shear buckling conditions (in 
the latter case it is known, that the bending-twisting coupling is important for the loss of 
structural stability). In the Section 2 we indicate some theoretical features of the composite 
plate buckling problem. Then in the Section 3 we consider the role of bending-twisting 
coupling in optimality conditions and their solutions. After that, in the Section 4 we discuss a 
numerical composite plate example, illustrating theoretical analysis of the previous Sections. 
We consider also the ways of using the theoretical results in designing real structures against 
buckling.   
 
2 Theoretical backgrounds 
We consider the rectangular flat thin composite plate shown in the Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Rectangular plate. 
 
The coordinate axes x, y are parallel to lateral sides of the plate, with the x axis being parallel 
to the longer side. The origin is located at the left bottom corner of the plate. In general, the 
plate is loaded by compression in two directions and shear. The signs of loads are the 
following. The flows yx NN ,  are positive in tension, the shear flow xyN  is positive when it 
decreases the 90° angle between the lateral sides at the origin. The flows may vary along 
edges and are in equilibrium. The Composite Lamination Plate Theory (CLPT) is used for 
description of plate deflections (see [6]). The plate is made of fiber-reinforced tape, with the 
lay-up being symmetric. The boundary conditions considered are the simple support and/or 
clamping. In the present paper we follow the known Bryan energy approach.  
The equation for the plate deflection w is written as follows:  
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where ,6,2,1;6,2,1, == jiDij  are the elements of the bending stiffness matrix D, coupling the 
bending/twisting moments and various second derivatives of the deflection w with respect to x 
and y.  
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The kinematic variational principle used in the paper is written in the form of stationarity of 
the following ratio (under the same boundary conditions as before): 
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The eigen value, corresponding to the solution w of the considered buckling problem, may be 
calculated as the Rayleigh ratio: 
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The complementary and the mixed variational formulations are also indicated. It is shown 
how the buckling eigen value may be calculated using the complementary variational 
principle. 
The reciprocity theorem for buckling states is proved, namely, the work performed by the 
buckling-induced forces of the state ′ on deflections of the state ″, is equal to the work 
performed by the forces of the state ″ on deflections of the state ′. The theorem is an analog of 
the known Betti theorem of structural mechanics in application to plate buckling. The theorem 
may be useful for checking the solutions and benchmarking.  
The bending-twisting terms in (1) may be considered as small perturbations of the equation 
without the terms, as the values of 2616 , DD  are, as a rule, not greater than 10-15% of 11D . 
Using the small perturbation approach, the following estimation of the first-order correction 
value Δλ for the eigen value λ is obtained: 
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where 0w  is the solution of the eigen value problem with 02616 == DD . 
 
3 The role of bending-twisting coupling in layer/laminate orientation optimization 
3.1 Orthotropic case 
We suppose the plate to be orthotropic and consider the role of the bending-twisting coupling 
in optimal choice of the plate orthotropy orientation. Saying “optimal” we mean maximizing 
the (lowest) buckling eigen value.  
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The orthotropic plate model is a model which allows describing some important features of 
the composite plate, taking into account the bending-twisting coupling generated by rotation 
of the orthotropy axes. That is why at first we consider an auxiliary optimization problem for 
an in-plane loaded orthotropic plate, with orthotropy axes orientation at every point being 
determined from optimization (maximization) of the lowest buckling eigen value. The 
boundary conditions considered are the same as in the previous Section. It is assumed that the 
eigen values are simple. It is known, that the simple eigen value optimality consideration is a 
part of the multiple eigen value optimality one (the latter takes into account the possible non-
differentiability of the minimal eigen value to be maximized).  
We assume that the plate bending stiffness matrix D in local material axes is the same at every 
point of the plate. The orientation of the local material axes is determined by the angle θ (see 
Figure 2, where the angle is negative) between the x axis and the local material axis 
corresponding to 11D (the strongest direction).  

 
 
 
 
 
 
 
 
 

Figure 2. Local material axes orientation. 
 

Resulting from the optimization problem, the angle θ(x,y) as a smooth function must be 
determined.  
The deflections of the buckling state of the plate for every function θ(x,y) may be  determined 
by the kinematic variational principle (2). According to the regular way of obtaining the 
optimality conditions in such optimization problems, the buckling eigen value given by the 
Rayleigh ratio is maximized. The necessary optimality condition is (for all points within the 
plate):  
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considered as calculated in the coordinate system corresponding to the principal curvature 
lines of the surface w(x,y) to the x, y plane. We denote the principal curvature values as 1k  and 

2k , where 21 kk ≥ . Also in the case the angle ψθω −=  is the angle between material axis 1 
(corresponding to matD11 ) and the principal curvature direction 1 (corresponding to 1k ), ψ  is 
the angle between x axis and 1k  direction. 
Finally (7) leads to the following relation 
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where the elements of the D matrix correspond to the coordinate system of the principal 
curvature axes, as indicated by the superscript pr.cur. The relation (8) combines the 
conditions: 
 

21 kk =                                                            (9) 
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(8) may be also written as: 
 

( ) 0..
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The obtained expressions (8)-(12) clearly demonstrate the role of the ..

16
..

16 , curprcurpr DD  quantities 
and of the principal curvature values. As we see, the equality to zero of the twisting moment 
in non-umbilical points is a fundamental feature of the optimal solution.  
Further we consider the optimal lay-up orientation of the composite orthotropic plate against 
buckling. The only parameter to be varied is the orientation angle of the whole plate. The 
solution of the problem is, to some extent, “an average” of the result of the above 
optimization problem. The derivation of the necessary optimality condition is similar to the 
locally orthotropic plate case. The condition is written as  
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where the angle θ  is considered as being of the same value for the whole plate, with the 
value being a purpose of the optimization.  

Making necessary transformations, we obtain: 
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or, in another form: 
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which physically means, that the twisting moment in principal curvature axes must have some 
“balanced” and close to zero value. The multiplier 21 kk −  penalizes the deviation of the 
moment from zero: the more is the difference in principal curvature values, the greater is the 
input into the integral in (15).  
Concluding the discussion of the two optimization problems and corresponding optimality 
conditions, one may say, that for the structure optimal in the first problem there is no twisting 
moment in principal curvature axes (except umbilical points), or, in other words, the moment 
tensor and the tensor of curvatures are co-axial. For the structure optimal in the second 
problem the twisting moment is not necessarily equal to zero in the structure, but the averaged 
value of the moment with the multiplier 21 kk −  is equal to zero.  
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3.2 Anisotropic case 
In the sub-Section we consider the role of the bending-twisting coupling in optimal choice of 
the plate anisotropy (layer orientation distribution) for maximizing the (lowest) eigen value. 
The eigen value is supposed to be simple. We use lamination parameter approach [6]. 
As a first (auxiliary) task we consider determination of layer orientation angles iθ , i=1,…,N, 
as smooth functions of (x,y), where 2*N is the total number of layers (we do not consider 
separately the case of odd number of layers in the plate lay-up because of non-significant 
complication of the analysis). 
The optimality conditions like (7) are also valid for the case, namely:  
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The solutions of (16) for i=1,...,N are: 
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where ,4,...,1, =iUi  are some layer elastic parameters [6]. The relation (17) corresponds to the 

umbilical points. The relation (18) corresponds to ψθ −i  =0 and 2
π± . The quantities 

66221211 ,,, QQQQ  are the elements of the layer stiffness matrix (in local coordinates), 
depending on layer elastic properties 12211221 ,,,, GEE νν  only. There are only two solutions of 
(19), namely  
 

0ϑψθ ±=−i                                                            (20) 
 
where [ ]2,00

πϑ ∈  and 0ϑ  depends on a point at the plate via 21,kk .   

Making summation of the derivatives of the stiffness matrix elements, we obtain the above 
relation (8), and, hence, (12). Thus, the relations (8) and (12) are the consequence of the 
necessary optimality conditions (16). It is clear, that at the non-umbilical points the twisting 
moment in principal curvature axes is equal to zero.  
The second task, to be considered, differs from the first one of the sub-Section in the layer 
orientation angle distributions, namely, the angles have the values permanent for the whole 
plate. As above, we maximize the (lowest) buckling eigen value, with the orientation angles 
being the variables.  
The optimality conditions in the case are:  
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Calculating (21) in the principal curvature axes leads to the above-obtained relation (14), and, 
hence, to (15). Thus, the relations (14) and (15) are the consequence of the necessary 
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optimality conditions (21). As a combination of the relations (21), the conditions (14) or (15) 
are also the variants of necessary optimality condition, allowing making the same conclusions 
about bending-twisting coupling as ones made in the above sub-Section.  
Ending the Section 3, we conclude, that the bending-twisting coupling terms are presented by 
the same expressions in the considered necessary optimality conditions for both orthotropic 
and anisotropic cases.   
 
4 Numerical examples  
The example problems of a thin long simply supported composite plate, loaded by shear, are 
considered.  
For the first problem the lay-up is symmetric and, if it is not said different, orthotropic 
[ ][ ]s4)90/( °+θθ , where θ  is the lay-up orientation angle to be optimized. The angle 

corresponds to the orientation of the strongest material axis. The plate consists of 16 
unidirectional layers of t300/5208 CFRP material and has the total thickness of 2 mm. The 
plate dimensions are 200 by 1000 mm. The reference in-plane shear flow applied is equal to 
50 N/mm. The numerical analysis is performed by FEM. 
The buckling analysis performed for typical shear-targeted lay-up +/-45°, results in λ=1.30; -
1.67 (sometimes we will indicate the eigen value with the negative sign, which means the 
negative shear loading direction).  
Analysis performed using small perturbation approach (6) combined with energy approach [7] 
for the specially orthotropic material gives λ=+/-1.49-0.20. As we see the approach (6) 
provides results very close to ones, calculated directly by FEM.  
The Figure 3 demonstrates the shear buckling eigen values for various orientation angle θ. As 
we see, there are two maximums: for lay-ups 28°/118° (λ=1.47) and 60°/150° (λ=-1.93). The 
second one is the global one for the considered lay-ups. The lowest buckling modes for the 
maximums look like inclined (about 55°-60° to long side direction) waves, with the distance 
between the zero-deflection lines being approximately equal to 1.3b.   
 

 
Figure 3. Dependence of the buckling eigen values from the lay-up orientation angle θ. 

 
It is seen from the Figure 3, that the lay-up rotation up to 38° leads to equalizing the eigen 
vale at λ=+/-1.43 for both shear directions. For comparison, if the clamped boundary 
conditions are used, then the equalizing occurs at 35°. 
Direct check of the unidirectional (UD) laminate 60° (the configuration was founded 
numerically in [4]), leads to λ= 0.42 and -2.82. The positive shear has very low buckling 
level, which is inacceptable. 
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For the laminate with the lay-up +/-60° the lowest buckling values are 1.56 and -2.00, with 
the distance between the zero-deflection lines being approximately equal to 1.1b. The waves 
are more inclined (the angle is closer to 60°).   
Finally the best solution found is the lay-up [ ][ ]S4134/74 °°  with the lowest λ=~ +/-1.70 (the 
layer 74° is the outermost one). The waves are inclined with ~60° to the long side direction, 
and the distance between the zero-deflection lines is approximately equal to b. The benefit in 
buckling level comparing with the +/-45° lay-up is 30%. As we see, there is a promising plate 
weight saving potential. The Figure 4 demonstrates the optimal lowest buckling mode 
obtained.  
 

 
 

Figure 4. The lowest buckling mode for the lay-up 74°/134°. 
 
In all cases, considered in the Section, the lowest λ corresponding to the maximums are 
doubled in the vicinity of the solution.  
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