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Abstract  

The dynamic behaviour of layered composite beams with partial interaction is analysed using 

variational calculus. The theoretical results are compared with those from dynamic tests on 

simply supported beams with varying shear connection stiffness between the layers. The 

influence of the shear connection stiffness on the flexural natural frequencies, flexural 

deflection and damping is investigated. A good agreement between the analytical and 

experimental results is obtained. 

 

 

1 Introduction  

Composite or hybrid beams are formed by combining two or more layers or components of 

like or unlike materials. Such structures are often used in building and bridge construction, 

and in aircraft and watercraft applications, especially as sandwich constructions. A specific 

application is vibration of floor structures [1]. The different layers or components are usually 

attached to each other by means of adhesives or mechanical connectors. Usually, with 

adhesives, full composite action is achieved, but with mechanical connectors, only partial 

composite action will develop. The characteristic of the mechanical connectors is usually 

expressed in terms of slip modulus or shear connection stiffness. 

This study is focused on the vibrational behaviour of partially composite beams and 

determining the natural mode shapes and frequencies, deflection and damping as influenced 

by the shear connector stiffness.  

Vibrations of composite beams with partial interaction have been studied by a few 

researchers, both analytically and by using finite element methods. Both Euler-Bernoulli and 

Timoshenko models have been applied. However, corresponding experimental studies are not 

so frequent in the literature. Some of the early works are that of Henghold [2], who 

investigated eigenfrequencies and damping of layered beams including slip, and Girhammar 

and Pan [3]. Later, works of Xu and Wu [4] and Girhammar et al. [5] have been published in 

this field. Moreover, Wu and Xu [6] included the effect of axial load in their analysis. With 

respect to sandwich beams, the work of Sainsbury and Zhang [7], Wang and Wereley [8], 

Bozhevolnaya and Sun [9], and Koutsawa and Daya [10] can for example be mentioned.  

This work is part of a research project dealing with the dynamic behaviour of partially 

composite beams with and without axial loading. The focus is on the experimental evaluation 

and validation of the theoretical models. The main application is floor vibrations, but also 

general vibrations in partially interacting layered, laminated, and sandwich-type of structures. 
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In the dynamic tests, the influence of the shear connection stiffness on the flexural natural 

frequencies, flexural deformation and damping is investigated. 

 

 

2 Theory 

2.1 Basic assumptions 

Consider a composite beam consisting of n layers interacting through shear connectors at the 

n-1 interlayer interfaces. In the general case, the beam is subjected to a distributed load q(x) 

along its length L as well as an axial load F, see Fig.1. The individual layer has the elastic 

modulus Ei, area Ai and the distance zi from the global coordinate system to the centroid of the 

individual layer. In a local description, the axial displacement and the Hookean stresses in an 

individual layer at the point (x,z) at time t is given by 
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where 1( , , )iu x z t  is the axial displacement of the middle line (centroidal line) of the individual 

layer. 
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Figure 1. Composite beam consisting of n layers with interlayer slip. The beam is subjected to a distributed load, 

q(x,t), and an axial force, F.  

 

The slip (Fig. 2a) at the interface i between layers i and i + 1 is according to Eq. (1) given by 
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where ( , , )i i iu u x z t  and 1 1 1( , , )i i iu u x z t    denote the axial displacements at the centroids 

of layers i and i+1, respectively, w(x,t) the lateral displacement, and ri the distance between 

the centroids of layers i and i + 1. The corresponding interlayer slip force per unit length (Vsi) 

can then be written as 

 

                                                      siisi uKV  ;   1,....,1  ni                                                   (4) 

 

where Ki [N/m
2
] is the constant slip modulus for the individual interlayer as is usually 

assumed in the linear elastic composite action theory. For the solution and applied example 

according to Section 2.5, it is assumed that Ki = K. 
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2.2 Internal normal forces and moments 

A free body diagram of the internal normal forces and moments, shear forces and interlayer 

slip forces for the individual layers is shown in Fig. 2b. The corresponding forces and 

moments acting over whole cross-section are also shown in the figure. It is now assumed that 

the coordinate axis is located in the centroid of the fully composite section and that the axial 

load is applied along the x-axis. This implies that the axial force will induce only axial strain 

in the composite member and that the total axial force (F) is distributed to the individual 

layers (Fi) according to their axial stiffnesses, i.e. 
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In Fig. 2a, the interlayer slip between two consecutive layers is illustrated (cf. Eq. (3)). This 

section will be focused on the internal moments and normal forces.  
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Figure 2. (a) The interlayer slip usi between layers i and i + 1 depends on the axial displacements ui and ui+1 of 

the two layers, respectively; (b) Internal forces and moments acting on each of the n layers together with forces 

and moments acting on the whole cross-section. 

 

Axial equilibrium gives the total normal force F acting on the whole cross-section at any 

position x along the beam as 
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where Eq. (2) has been used (the term associated with the curvature becomes after the 

integration), and Ni  is the axial force on the cross section along the centroidal axis of the 

individual layer. Moment equilibrium gives the total moment M acting on the whole cross 

section of the beam at a location x as  
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2.3 Potential and kinetic energy 

Expressions for the associated potential energy from the action of the internal normal forces 

and moments, and slip forces are needed in the derivation of the equations of motion from 

Hamilton’s principle. Shear forces will be neglected as in the Euler-Bernoulli’s model. The 

potential energy associated with the axial and bending normal stresses can be expressed as 
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where the potential energy associated with uniform axial strain of the both layers are given by 
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and the potential energy associated with bending is 
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where Ii is the moments of inertia of the individual layer. The potential energy stored in the 

interlayer connectors is given by                 
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The kinetic energy of the system is given by 
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where mi is the mass per unit length of the individual layer. 

 

2.4 External loadings 

External loadings give rise to work or potential energy. The composite beam will here be 

considered subjected to general loads as distributed transversal load q(x, t) and an axial load 

F. External boundary loads and masses are discussed separately. The distributed load 

produces the following work due to the deflection and the axial load due to the axial 

displacement of the ends as a consequence of the deflection 
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2.5 Boundary loadings and masses 

The composite beam will here be considered subjected to both time-independent boundary 

loadings as axial loads, end moments and end shear-type of forces, and time-dependent 

boundary conditions as concentrated end masses. Including concentrated masses at the ends in 

the analytical models is a way to take test fittings into account when evaluating the test 

results. The boundary loadings and masses and their corresponding work or energy 

expressions can be included in the Lagrangian function in the variational analysis or directly 

be included in the expressions for the total shear force and bending moment at the respective 

end of the beam [5]. In this paper, the latter approach is adopted.  

At the end x = xB = [0, L], the total bending moment , BB xM  and the total shear force , BB xV  are 

included directly in the boundary conditions for the moment and shear force or as the sum of 

their individual boundary moments and shear forces, respectively, as  
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where , , Bi B x  and , , Bi B x  are expressions for the normal and shear stresses on the end cross-

section of the individual layer. However, for the axial load, the third equation in Eq. (14), the 

individual axial force Fi needs to be used. 

According to d’Alembert’s principle, concentrated masses give rise to shear forces and 

moments. Here we will neglect the rotary inertia, i.e. we will neglect the moment effect of the 

masses. The shear force effect of the masses can be expressed as 
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where , BB xm  is the concentrated mass at the end xB = [0, L], and the upper sign refers to xB = 0 

and the lower to xB = L. 

 

2.5 Dynamic response of partially composite beams – Application to three-layer beams 

Using variational calculus with respect to the potential and kinetic energies according to Eqs. 

(9) - (13), the following governing differential equation for the deflection is obtained 
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where  and  shear connector parameters, and EI and EI0 the bending stiffness of the fully 

and non-composite section, respectively.  

Applied to a composite beam with three equal layers as the test specimen according to Fig. 3, 

the internal normal force and the different parameters are given by 
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where N1 (= – N3) is the force in the outer layer (N2 = 0 due to symmetry), r is the distance 

between the centroids of the outer layers (i = 1 and i = 3).  

 

2.6 Application to simply supported three-layer composite beams without axial load 

The test specimens (Fig. 3) are simply supported composite beams with three equal layers and 

with no axial load (F = 0). Using the boundary conditions:  w = ∂
2
w/∂x

2 
= ∂

4
w/∂x

4
 = 0 at x = 0, 

L, the solution of Eq. (16) yields the following expression for the circular eigenfrequencies 
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where kn is the wave number (kn = n/L), and ∞n the eigenfrequencies of a fully composite 

beam. For equal layers of width b and height h, the following parameters are obtained 
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The slip modulus K or the shear connection stiffness L is evaluated by conducting a static 

deflection test. The maximum static deflection (wmax) for a simply supported beam subjected 

to a mid-point load is given by [11] 
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where w∞,max is the maximum deflection for a fully composite beam. 

 

 

3 Method and equipment 

The experiments were performed on a composite beam consisting of three layers of 

aluminium (E = 70 GPa;  = 2700 kg/m
3
) having a length of 2 m and a rectangular cross 

section of width 80 mm and height 5 mm. The aluminium layers were connected by 

maximally 19 pairs of plugs of the material polyoxymethylene (POM) with a diameter of 8 

mm, see Fig. 3. The parameters for the beam became as follows: 0EI = 175 Nm
2
, EI = 1575 

Nm
2
, m = 3.24 kg/m, k1 = 1.57 m

-1
, and ,1f = 8.65 Hz. The acceleration of the beam was 

measured by a capacitive accelerometer (LIS3L06AL MEMS inertial sensor) from ST 

Microelectronics connected to a signal conditioning device. The accelerometer has a 

frequency range from DC up to 1.5 kHz. The accelerometer signal conditioning device is 

connected to a laptop computer running the software Audacity® for storing the recorded 

signal in wave-format. The dimensionless shear connection stiffness, αL, which includes the 

slip modulus according to Eq. (18), of the partial interaction of the beam is determined from 

measurement of the steady state deflection of the beam under a static load at mid-span (Eq. 

(21)). The deflection is measured using a dial gauge. The vibration experiments are first 

performed on a beam connected by 19  2 = 38 plugs and then again on the same beam with 

half of the plugs dismantled. The accelerometer is mounted at mid-span of the beam in order 
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to detect the fundamental mode of the beam. The vibrations of the beam are excited by a 

gentle manual push and the oscillations are then recorded during a time interval lasting around 

40 s. 

 

 
Figure 3. The composite beam consisted of three layers of aluminium connected by plugs of the material POM 

(polyoxymethylene). The individual layers had a width of 80 mm and height 5 mm. The overall length of the 

beam is 2 m. There are 19 pairs of plugs at a distance of 10 cm. 

 

 

4 Results 

The measurements were performed on beams connected by 38 and 19 POM plugs as shear 

connectors, respectively. For 38 plugs the measured fundamental frequency was 8.7 Hz; the 

corresponding power spectrum is presented in Fig. 4 (right curve). The measured damping 

was 0.28 s
−1

 and the modal damping ratio was 0.0051. For the static test on the composite 

beam loaded the deflection at mid-span was measured. This yielded a shear connection 

stiffness of αL = 23 and the effective bending stiffness was calculate to give EIeff = 1.4 kNm
2
.  

For 19 plugs the measured fundamental frequency was 8.1 Hz; the corresponding power 

spectrum is shown in Fig. 4 (left curve). The damping was 0.16 s
−1

 and the modal damping 

ratio was 0.0031. The deflection measurement yielded, αL = 13 and EIeff = 1.1 kNm
2
.  

 

 

Figure 4. Acceleration power spectrum density for the composite beam connected by 19 plugs (maximum to the 

left) and 38 plugs (maximum to the right), respectively. 

 

A summary of results for both cases is presented in Table 1. 

 

Case 

 

EIeff  

(kNm
2
)  

L ftheory  

(Hz) 

fexp  

(Hz) 



1(38 plugs) 1.4 23 8.5 8.7 0.0051 

2 (19 plugs) 1.1 13 7.5 8.1 0.0031 

Table 1. Results for the composite beam with 38 plugs and 19 plugs, respectively; L is the shear connection 

stiffness, EIeff the effective bending stiffness, ftheory the theoretical fundamental eigenfrequency, fexp  the measured 

eigenfrequency, and   the modal damping ratio of the fundamental mode. 
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5 Discussion 

The measured shear connection stiffness, αL = 23, for the case when all the 38 plugs were 

inserted into the beam, indicates that the partial interaction of this beam was so strong that it 

behaved almost like a fully composite beam. In the second case, when 19 plugs were used as 

connectors between the layers, the deflection experiments yielded αL = 13, which implies that 

a weaker partial interaction is produced in this case.  

The damping of the structural vibrations is caused by: (1) dissipation in the plastic plugs 

connecting the layers; (2) friction between the layers; and (3) friction at the boundaries. The 

fact that the damping was lower in the second case (19 plugs) suggests that the damping is 

mainly due to energy dissipation in the plugs. 
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