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Abstract
The aim of this paper is to study the dynamics of partially interacting composite beams sub-
jected to axial loads. The eigenfrequencies are derived forthe simply supported composite
beam subjected to an axial force. Measurements of the fundamental frequencies of a simply
supported composite beam consisting of three layers connected by shear connectors are carried
out considering different values of the applied axial force. The agreement between the theoret-
ical and experimental results is discussed. It is also shownthat the application of the axial
force introduces frictional moments at the boundaries, which make the experimental boundary
conditions deviate somewhat from those of an ideal simply supported beam.

1 Introduction
Composite structures with partial interaction are frequent in the civil engineering and construc-
tion industry. As an example, floor and wall elements in buildings are often composite struc-
tures, e.g. of concrete and wood interacting partially through shear connectors. To obtain full
advantage of composite beams, the layers of the composite beams should act compositely. Com-
posite action enhances the static and dynamic behaviour of the beam significantly and allows
long clear spans with a slim floor depth giving many benefits for multi-storey building design.

This study is aimed at studying the dynamic behaviour of partially composite beams subjected
to static axial forces. An important aspect of the dynamic analysis of composite beams is
the determination of their natural frequencies, damping, deformations and mode shapes [1].
This is important because composite beam structures often operate in different environmental
conditions and are often exposed to a variety of dynamic excitations such as axial excitation.
These composite structures can be subject both to static anddynamic loads. The statics of
composite structures with partial interaction have been considered by e.g. Girhammar [2]. The
dynamics of composite structures have been studied e.g. by Henghold [3] and Girhammar et
al. [4], where the equations of motion were derived from Hamilton’s principle. Their results
were derived for the case of no axial load. Theoretical results for the eigenfrequencies of axially
loaded beams have been presented by Wu et al. [5].

Coulter and Miller [6] studied free vibration of elastic Euler-Bernoulli beams subjected to non-
uniform axial forces and the buckling of elastic columns using beam finite elements. Bokaian
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[7, 8] presented a set of transcendental equations to derivethe natural frequency and the load
ratio, for several combinations of boundary conditions including simply supported, sliding, free
or clamped ends. A uniform beam under constant axial compressive force and tensile axial
force was considered. Guédé and Elishakoff [9] derived closed-form solutions for the funda-
mental natural frequencies of inhomogeneous vibrating beams under axially distributed loading.
Several sets of boundary conditions were considered. It wasshown that the natural frequency
vanishes when the intensity of the axially distributed loading equalled the critical buckling
value. Mok and Murray [10] presented theoretical and experimental results for the vibrations
of inhomogeneous columns subjected to axial loading. Yeh and Liu [11] investigated the vi-
brations of inhomogeneous columns subjected to axial loading using the Galerkin method for a
uniform beam column with rotational and translational restraints. Williams and Banerjee [12]
investigated the free vibrations of axially loaded beams with linear or parabolic taper for var-
ious sets of boundary conditions. Banerjee and Williams [13] determined the first five natural
frequencies of axially loaded tapered columns for eleven combinations of boundary conditions,
within the Bernouilli-Euler and the Bresse-Timoshenko beam theories. Gottlieb [14] derived
seven different classes of inhomogeneous Bernouilli-Euler beams of continuously varying ma-
terial density and flexural stiffness. Other related studies are those by Gajewski [15], Datta and
Nagraj [16], Shaker [17], Glück [18]. Liu et al. [19] investigated the coupled axial-torsional
vibration of pre-twisted beams. The equations of motion governing the extension, torsion, and
cross-sectional warping of pre-twisted beams were derivedfrom Hamilton’s principle, and the
common assumptions used to simplify the equations were carefully examined through scaling
analysis. Chen and Ho [20] studied the problem of transversevibration of rotating twisted Tim-
oshenko beams under axial loading using the differential transform method to obtain natural
frequencies and mode shapes. Naguleswaran [21] derived an approximate solution to the equa-
tions of transverse vibration of the uniform Euler-Bernoulli beam under linearly varying axial
force.

2 Equations of motion
The equations of motion are obtained by first finding the Lagrangian, and then applying Hamil-
ton’s principle [22]. In the case of three identical layers,see Fig. 1, it is most convenient to
eliminate the axial force in the middle layer, and the equations of motion reduce to
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wherew is the lateral displacement according to Fig. 1 and∆N=N1−N3 the difference between
the axial forces in the outermost layers. The sum of the bending stiffnesses of the three layers
is denoted byEI0 and the slip modulus, i.e. the proportionality constant between the interlayer
force and the interlayer slip, byK. The axial force is denoted byF. The mass per unit length
is denoted bym and the distance between the centroids of adjacent layers are denoted by∆z.
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Figure 1. The composite beam consisted of three layers of aluminium connected by plugs of the material
polyoxymethylene(POM). The individual layers had a width of 80 mm and height 5 mm. The overall length of

the beam is 2 m. There were maximally 19 pairs of plugs at a distance of 10 cm.

where the bending stiffness of the fully composite beam is

EI∞ = EI0

(

1+
2EA(∆z)2

EI0

)

(4)

and

α2 = K

(

1
EA

+
2(∆z)2

EI0

)

. (5)

At a pinned end, there is no moment (MB = 0), no lateral displacement (w= 0) and a prescribed
axial force (∆N = 0). This results in the following set of boundary conditionsfor a pinned end
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2.1 Dynamic solution for a simply supported beam
Consider a beam with both ends pinned, one atx= 0 and the other atx= L. Eq. (3) is solved
by the method of separation of variables [22, 23], i.e. the displacement is written as

w(x, t) = φ(x) f (t) (9)

yielding the equations
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b (mm) h (mm) L (m)
80 5 2.00

EI0 (Nm2) EI∞ (Nm2) m (kg/m)
175 1575 3.24

k1,1 (m−1) f∞,1 (Hz) P∞,cr,1 (kN)
1.57 8.65 3.89

Table 1. Geometric parameters(width, height and length), the bending stiffness in the cases of no interaction as
well as full interaction and mass per unit length. The table also contains the theoretical values of the wave number

of the fundamental mode, the fundamental frequency, and thecritical force. The values are calculated from the
valuesE = 70 GPa andρ = 2700 kg/m3 for aluminium.

A solution of the formφ(x) = exp(kx) yields the characteristic equation

k6
−

(

α2+
F

EI0

)

k4
−

(

mω2

EI0
−

Fα2

EI∞

)

k2+α2mω2

EI∞
= 0, (12)

and application of the boundary conditions for pinned ends both atx= 0 andx= L yields the
eigenfrequencies
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where the wave number is given by
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nπ
L
, (14)

and the eigenfrequencies of a fully composite beam are givenby
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The critical compressive force of the fully interacting composite beam is denoted by

P∞,cr,n = EI∞k2
1,n. (16)

3 Method and equipment
The experiments were performed on a composite beam consisting of three layers of aluminium
having the length 2 m and a rectangular cross section of width80 mm and height 5 mm. The
aluminium layers were connected by 19 plugs of the material polyoxymethylene (POM) having
the diameter 8 mm, see Fig. 1. The different parameters of thebeam and fundamental frequency
and critical force in the case of full interaction are summarised in table 1.

The composite beam was mounted in a frame exerting the axial compressive force on the beam,
see Fig. 2. The frame consisted essentially of steel plates on each side of the composite beam.
The plates were connected by two threaded bars and the axial force was adjusted by changing
the angular position of the nuts supporting the plates. The force was measured by measuring
the compression of two sets of cup springs, where each set consisted of 40 cup springs, see
Fig. 2. The whole assembly of cup springs had an effective spring constant of 460 N/mm.
The supports were designed to allow free rotation of the beamwhile also transferring the axial
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Figure 2. The accelerometer is connected to a signal conditioning device, which is connected to a laptop
computer for data retrieval.

Hinge

Beam

Figure 3. The figure shows the support at one end of the beam. The beam is clamped between two plates and the
whole support device is hinged at the end.

force to the beam, see Fig. 3. At the support, the beam is clamped between two plates and the
whole support device is hinged at the end, see Fig. 3. The supports are sources of both additional
inertia and friction at the boundaries. The acceleration ofthe beam was measured by a capacitive
accelerometer (LIS3L06AL MEMS inertial sensor) from ST Microelectronics connected to a
signal conditioning device designed and built by the Mechanics Division in the Department
of Applied Physics and Electronics at Umeå University, seeFig. 2. The accelerometer had a
frequency range from DC up to 1.5 kHz. The accelerometer signal conditioning device was
connected to a laptop computer running the software Audacity for storing the recorded signal
in wav-format, see Fig. 2. The slip modulusK or, equivalently, the parameterαL (see Eq.
(5)) of the partial interaction of the beam was determined from measurement of the steady state
deflection of the beam under a static load at mid-span. The deflection was measured using a
dial gauge.

The vibration experiments were first performed on a beam connected by 19 plugs without axial
force and then again with an axial force applied. The accelerometer was mounted at mid-span of
the beam in order to detect the fundamental mode of the beam. The vibrations of the beam were
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F (kN) f1 (Hz) f1 (Hz) Damping ratioζ
Theory Experiment Experiment

S.S. C.C.
0 7.2 19.6 9.2 0.09

-1.6 4.6 12.1 10.9 0.02

Table 2. Comparison of theoretical and experimental results. S.S and C.C are abbreviations of simply supported
and clamped-clamped, respectively.
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Figure 4. Acceleration spectrum in the case of no axial force. The spectrum has a maximum at around 9.2 Hz.

excited by a gentle manual push and the oscillations were therecorded during a time interval
lasting around 40 s.

4 Results
The deflection measurement yielded an interaction parameter αL = 13. The frequency of the
fundamental mode in the absence of axial force was measured to be 9.2 Hz and the correspond-
ing modal damping ratio was 0.09, see Fig. 4. When an compressive axial forceF = −1.6 kN
was applied, then the frequency of the fundamental mode increased to 10.9 Hz and the damp-
ing ratio decreased to 0.02, see Fig 5. The theoretical value of the fundamental frequency
was 7.2 Hz in the case of zero force, and 4.6 Hz in the case of an compressive axial force
F =−1.6 kN. The corresponding theoretical values for the clamped-clamped beam were 19.6
and 12.1 Hz, respectively. The results are summarized in table 2.
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Figure 5. Acceleration spectrum in the case of an axial compressive force of 1.6 kN. The spectrum has a
maximum at around 10.9 Hz.

5 Conclusions
The experimental result that the fundamental frequency of the beam increased as the axial force
increased was in contradiction to the theoretical result for the simply supported beam. A pos-
sible explanation is that the supports impede the motion of the beam at the boundaries due
to both friction and inertia. The boundary conditions can therefore no longer be considered
as pinned. Instead, the actual boundary conditions are somewhere in between the pinned and
clamped cases. Observe that the experimental fundamental frequency is somewhat higher than
the theoretical value for the simply supported beam in the case of zero axial, but significantly
lower than the theoretical value for the clamped-clamped beam. When the axial force is applied,
then the experimental fundamental frequency instead approaches the theoretical value for the
clamped-clamped beam from below. This indicates that the boundary conditions become closer
to clamped than pinned as the axial force is applied. One possible explanation could be that the
friction at the boundaries increases as the axial force is increased. A more detailed analysis of
the boundary conditions with respect to friction and inertia is needed (see e.g. [4] with respect
to boundary effects).

Further work must be spent on designing supports with lower friction in order to get a better
agreement with the theoretical results for the fundamentalfrequency of an axially loaded simply
supported composite beam.
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