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Abstract

The aim of this paper is to study the dynamics of partiallgiatting composite beams sub-
jected to axial loads. The eigenfrequencies are derivedHersimply supported composite
beam subjected to an axial force. Measurements of the fuedt@infrequencies of a simply
supported composite beam consisting of three layers coathéy shear connectors are carried
out considering different values of the applied axial fortbe agreement between the theoret-
ical and experimental results is discussed. It is also shivat the application of the axial
force introduces frictional moments at the boundaries,clvimake the experimental boundary
conditions deviate somewhat from those of an ideal simgip@ued beam.

1 Introduction

Composite structures with partial interaction are frequethe civil engineering and construc-
tion industry. As an example, floor and wall elements in bodd are often composite struc-
tures, e.g. of concrete and wood interacting partially digfoshear connectors. To obtain full
advantage of composite beams, the layers of the compositedxehould act compositely. Com-
posite action enhances the static and dynamic behaviolnedbeéam significantly and allows
long clear spans with a slim floor depth giving many benefitsialti-storey building design.

This study is aimed at studying the dynamic behaviour ofipliyrtcomposite beams subjected
to static axial forces. An important aspect of the dynamialysis of composite beams is
the determination of their natural frequencies, dampiregfpianations and mode shapes [1].
This is important because composite beam structures offerate in different environmental
conditions and are often exposed to a variety of dynamict&ens such as axial excitation.
These composite structures can be subject both to statichamaimic loads. The statics of
composite structures with partial interaction have beatsiciered by e.g. Girhammar [2]. The
dynamics of composite structures have been studied e.g.ebgldld [3] and Girhammar et
al. [4], where the equations of motion were derived from H#onis principle. Their results
were derived for the case of no axial load. Theoretical tedal the eigenfrequencies of axially
loaded beams have been presented by Wu et al. [5].

Coulter and Miller [6] studied free vibration of elastic EtBernoulli beams subjected to non-
uniform axial forces and the buckling of elastic columnsigdbeam finite elements. Bokaian
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[7, 8] presented a set of transcendental equations to dirweveatural frequency and the load
ratio, for several combinations of boundary conditiondudg simply supported, sliding, free
or clamped ends. A uniform beam under constant axial commeesorce and tensile axial
force was considered. Guédé and Elishakoff [9] derivedet-form solutions for the funda-
mental natural frequencies of inhomogeneous vibratingisaander axially distributed loading.
Several sets of boundary conditions were considered. Itsvas/n that the natural frequency
vanishes when the intensity of the axially distributed logdequalled the critical buckling
value. Mok and Murray [10] presented theoretical and expenital results for the vibrations
of inhomogeneous columns subjected to axial loading. Yehlam [11] investigated the vi-
brations of inhomogeneous columns subjected to axial hgadsing the Galerkin method for a
uniform beam column with rotational and translational na@sts. Williams and Banerjee [12]
investigated the free vibrations of axially loaded beanih Wnear or parabolic taper for var-
ious sets of boundary conditions. Banerjee and William$ fiE3ermined the first five natural
frequencies of axially loaded tapered columns for elevenlinations of boundary conditions,
within the Bernouilli-Euler and the Bresse-Timoshenkorbeheories. Gottlieb [14] derived
seven different classes of inhomogeneous Bernouilli+Hut@ams of continuously varying ma-
terial density and flexural stiffness. Other related stsidi® those by Gajewski [15], Datta and
Nagraj [16], Shaker [17], Gluck [18]. Liu et al. [19] invégated the coupled axial-torsional
vibration of pre-twisted beams. The equations of motionegoing the extension, torsion, and
cross-sectional warping of pre-twisted beams were defined Hamilton’s principle, and the
common assumptions used to simplify the equations werdutigrexamined through scaling
analysis. Chen and Ho [20] studied the problem of transwebsation of rotating twisted Tim-
oshenko beams under axial loading using the different@adsiorm method to obtain natural
frequencies and mode shapes. Naguleswaran [21] derivagpaoxdmate solution to the equa-
tions of transverse vibration of the uniform Euler-Berolkam under linearly varying axial
force.

2 Equations of motion

The equations of motion are obtained by first finding the Lagian, and then applying Hamil-
ton’s principle [22]. In the case of three identical layesse Fig. 1, it is most convenient to
eliminate the axial force in the middle layer, and the eauregiof motion reduce to
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wherew s the lateral displacement according to Fig. 1 Ahd= N; — N3 the difference between
the axial forces in the outermost layers. The sum of the Imgnsliffnesses of the three layers
is denoted b¥E Iy and the slip modulus, i.e. the proportionality constanieein the interlayer
force and the interlayer slip, ki. The axial force is denoted dy. The mass per unit length
is denoted bym and the distance between the centroids of adjacent layerdesnoted by\z
EliminatingAN yields
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Figure 1. The composite beam consisted of three layers of aluminiumected by plugs of the material
polyoxymethylene(POM). The individual layers had a widtl80 mm and height 5 mm. The overall length of
the beam is 2 m. There were maximally 19 pairs of plugs at amiigt of 10 cm.

where the bending stiffness of the fully composite beam is

El =Elg <1+ 72'52('?2)2) (4)
and 1 2802
2 V4
a _K<E_A+ Elo ) ®)

At a pinned end, there is no momeMg = 0), no lateral displacement(= 0) and a prescribed
axial force AN = 0). This results in the following set of boundary conditidosa pinned end

92w
e 0 (6)
w = 0 (7)
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2.1 Dynamic solution for a simply supported beam
Consider a beam with both ends pinned, ong-at0 and the other at= L. Eq. (3) is solved
by the method of separation of variables [22, 23], i.e. tlspldicement is written as

w(x,t) = e(x) f(t) 9)

yielding the equations
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b (mm) h (mm) L (m)
80 5 2.00
Elg (Nm?) | El (NmM?) [ m (kg/m)
175 1575 3.24
kit (M) | fo1(HZ) | Peocra (kN)
1.57 8.65 3.89

Table 1. Geometric parameters(width, height and length), the ensliffness in the cases of no interaction as
well as full interaction and mass per unit length. The talde aontains the theoretical values of the wave number
of the fundamental mode, the fundamental frequency, andritieal force. The values are calculated from the

valuesE = 70 GPa ang = 2700 kg/m? for aluminium.

A solution of the formg(x) = exp(kx) yields the characteristic equation

2
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and application of the boundary conditions for pinned erath btx = 0 andx = L yields the
eigenfrequencies

-1
“h =l |1+ Pooinn - <1+ %) ] ’ (13)
where the wave number is given by -
Kin=" (14)
and the eigenfrequencies of a fully composite beam are dgyen
E lok?
W= — " (15)
The critical compressive force of the fully interacting qoosite beam is denoted by
Po.crn = Elekf . (16)

3 Method and equipment

The experiments were performed on a composite beam caomgsddtihree layers of aluminium
having the length 2 m and a rectangular cross section of vid@dtnm and height 5 mm. The
aluminium layers were connected by 19 plugs of the matealgigxymethylene (POM) having
the diameter 8 mm, see Fig. 1. The different parameters dfehen and fundamental frequency
and critical force in the case of full interaction are sumiset in table 1.

The composite beam was mounted in a frame exerting the aagbressive force on the beam,
see Fig. 2. The frame consisted essentially of steel platesoh side of the composite beam.
The plates were connected by two threaded bars and the axial Was adjusted by changing
the angular position of the nuts supporting the plates. dheefwas measured by measuring
the compression of two sets of cup springs, where each sststed of 40 cup springs, see
Fig. 2. The whole assembly of cup springs had an effectiviengpronstant of 460 Nmm.
The supports were designed to allow free rotation of the behite also transferring the axial

4
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Figure 2. The accelerometer is connected to a signal conditioningcdewhich is connected to a laptop
computer for data retrieval.
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Figure 3. The figure shows the support at one end of the beam. The bedamiped between two plates and the
whole support device is hinged at the end.

force to the beam, see Fig. 3. At the support, the beam is ddrbptween two plates and the
whole support device is hinged at the end, see Fig. 3. Theostggre sources of both additional
inertia and friction at the boundaries. The acceleratidh@beam was measured by a capacitive
accelerometer (LIS3LO6AL MEMS inertial sensor) from ST kdielectronics connected to a
signal conditioning device designed and built by the MedatgDivision in the Department
of Applied Physics and Electronics at Umea University, Beg 2. The accelerometer had a
frequency range from DC up to3 kHz. The accelerometer signal conditioning device was
connected to a laptop computer running the software Auglémitstoring the recorded signal
in wav-format, see Fig. 2. The slip modulisor, equivalently, the parameter. (see Eq.
(5)) of the partial interaction of the beam was determinechfmeasurement of the steady state
deflection of the beam under a static load at mid-span. Thed®ih was measured using a
dial gauge.

The vibration experiments were first performed on a beamected by 19 plugs without axial
force and then again with an axial force applied. The acosleter was mounted at mid-span of
the beam in order to detect the fundamental mode of the behavibrations of the beam were
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F (KN) f1 (Hz) f1 (Hz) Damping ratio{
Theory | Experiment] Experiment

S.S.| C.C
0 7.2 | 19.6 9.2 0.09
-1.6 | 46| 121 10.9 0.02

Table 2. Comparison of theoretical and experimental results. SdSGa@ are abbreviations of simply supported
and clamped-clamped, respectively.

Axial force F = 0.0 kN
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Figure4. Acceleration spectrum in the case of no axial force. Thetsperhas a maximum at aroun?Hz.

excited by a gentle manual push and the oscillations wereeit@ded during a time interval
lasting around 40 s.

4 Results

The deflection measurement yielded an interaction pararméte- 13. The frequency of the
fundamental mode in the absence of axial force was measuiexi92 Hz and the correspond-
ing modal damping ratio was@, see Fig. 4. When an compressive axial fdfce —1.6 kN
was applied, then the frequency of the fundamental modeased to 1® Hz and the damp-
ing ratio decreased to.@2, see Fig 5. The theoretical value of the fundamental &equ
was 72 Hz in the case of zero force, and64Hz in the case of an compressive axial force
F = —1.6 kN. The corresponding theoretical values for the clamgadiped beam were 19.6
and 12.1 Hz, respectively. The results are summarized la fab
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Figure5. Acceleration spectrum in the case of an axial compressigefof 16 kN. The spectrum has a
maximum at around 10 Hz.

5 Conclusions

The experimental result that the fundamental frequencly@btam increased as the axial force
increased was in contradiction to the theoretical resultife simply supported beam. A pos-
sible explanation is that the supports impede the motiorheflteam at the boundaries due
to both friction and inertia. The boundary conditions caeréfiore no longer be considered
as pinned. Instead, the actual boundary conditions arewsbere in between the pinned and
clamped cases. Observe that the experimental fundamesgaleincy is somewhat higher than
the theoretical value for the simply supported beam in tlse cd zero axial, but significantly
lower than the theoretical value for the clamped-clampearbéVhen the axial force is applied,
then the experimental fundamental frequency instead appes the theoretical value for the
clamped-clamped beam from below. This indicates that tieatary conditions become closer
to clamped than pinned as the axial force is applied. Onealdessxplanation could be that the
friction at the boundaries increases as the axial forcecieased. A more detailed analysis of
the boundary conditions with respect to friction and ireeisineeded (see e.g. [4] with respect
to boundary effects).

Further work must be spent on designing supports with lowetidn in order to get a better
agreement with the theoretical results for the fundamédrggqliency of an axially loaded simply
supported composite beam.
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