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Abstract  
The High Fidelity Generalized Method of Cells (HFGMC) has been implemented into 
Abaqus/Explicit in order to model damage processes in composite materials at the 
micromechanical level. The HFGMC model is implemented into the finite element code 
Abaqus via user material subroutine VUMAT. The result of the micromechanical procedure is 
the computation of strain concentration tensors, which relate the strain tensor on the macro-
level to the strain tensor of each subcell. This enables calculation of the stress field within the 
unit cell, based on the constitutive behavior of each subcell. As the stress distribution is 
determined for the representative unit cells, calculation of failure criteria and constitutive 
response of the composite are performed on the micro-level. The most frequently used 
micromechanical failure criteria have been used in this work as well. Parametric analyses 
using different unit cell shapes and discretization refinement have been performed. Results of 
micromechanical analyses confirm significant dependence of failure criteria on unit cell type 
and refinement. 

 
 

1 Introduction 
Failure modes of fiber reinforced materials are closely related to processes within the 
heterogeneous composite material. In order to get insight into the underlying damage 
processes of composite materials, a micromechanical model has been coupled to the 
commercial finite element code Abaqus/Explicit. Coupling between the micromechanical 
model and the finite element analysis has been achieved using the user material subroutine 
VUMAT. 
The micromechanical model employs an improved version of the High Fidelity Generalized 
Method of Cells, which has been introduced in [1,2,3]. The HFGMC model belongs to the 
group of micromechanical models which originated from the Method of Cells (MOC) model, 
introduced e.g. in [4]. The MOC model discretizes a fiber reinforced material by a 
representative volume element, or unit cell [4]. The representative cell is in the original model 
divided into four subcells, of which one represents the fiber while the matrix is represented by 
the remaining three subcells. An extension of the MOC model is the Generalized Method of 
Cells (GMC) which allows the composite material unit cell to be represented by an arbitrary 
number of subcells, enabling modeling of more complex composite materials [5]. In recent 
publications, the GMC has been used as a micro-model in multiscale analyses, as for example 
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in [6,7]. The most important drawback of the GMC model is the lack of "normal-shear 
coupling", which indicates that application of macroscopic normal strains/stresses produces 
only normal subcell strains/stresses although each subcell might be isotropic, transversely 
orthotropic or orthotropic. As stated in [3], this deficiency can potentially produce inaccurate 
results in the presence of cracks, disbonds or porosities. A further drawback of the GMC 
theory is that the displacement field within the unit cell is linear, making it unsuitable for e.g. 
wave propagation analyses, as stated in [4].  
The lack of normal-shear coupling and the drawbacks caused by the linear displacement field 
approximation have been later solved by the High Fidelity Generalized Method of Cells as 
explained in [8]. HFGMC uses a Legendre type polynomial to approximate the displacement 
field within the subcell, leading to fundamental differences between the HFGMC and GMC, 
although they share the same concept of unit cell discretization. Comparison of GMC and 
HFGMC micromechanical analyses can be found for example in [3,9]. The reformulated 
version of the HFGMC, which has been employed in this work, is in the literature also known 
as the Finite Volume Direct Averaging Micromechanics (FVDAM), as for example in [3]. 
The main difference in comparison with the original HFGMC is that it departs from the 
concept of Generic Cells, significantly reducing the final system of equations by 60% [2,8]. 
The main drawback of the HFGMC, compared to the preceding micromechanical models (e.g. 
GMC) is the increased computational time of the HFGMC method. The computational cost of 
HFGMC is still lower compared to similar FEM analyses, and therefore the HFGMC model 
presents a good compromise between the accuracy and computational cost. 
The methodology used in this work belongs to the group of multiscale analyses, since 
computations are being performed on two different length scales. More specifically, the 
solution of the explicit finite element analysis on the macro-level is passed to the micro-level 
HFGMC analysis, where composite failure criteria are calculated at the constituent level. The 
micromechanical model has in this work been used to predict composite equivalent properties 
and predict failure criteria on the micro-level. Damage processes have not been included in 
the model, since the method is still in the development phase. Consequently, constituent 
mechanical properties have not been degraded during the current research. The employed 
multiscale framework has been tested on a very simple finite element model in order to verify 
the micromechanical analysis and failure criteria. 
 
2 Micromechanical model 
2.1 HFGMC model 
The HFGMC model discretizes the representative volume element of the heterogeneous 
material using Nβ x Nγ subcells, which can be either fiber or matrix subcells. In order to study 
the effect of unit cell arrangement, three types of unit cells have been investigated as shown in 
Figure 1. The first unit cell incorporates a single fiber at the unit cell centre. The second unit 
cell discretizes the composite material with four fibers, with fiber centers located at the unit 
cell corners. The third unit cell is a combination of the first and second unit cells, with fiber 
centers at unit cell corners and a single fiber located at the unit cell centre. All unit cells in 
Figure 1 represent unidirectional composites with 60% fiber volume fraction. 
Basic discretization scheme of the HFGMC model is shown in Figure 2. The two-dimensional 
model for unidirectional fiber-reinforced materials is based on the assumption that fibers 
extend in the x1 - direction and are arranged in a doubly periodic array in the x2 and x3 
directions. The coordinate system used for the HFGMC model corresponds to the material 
coordinate system of the composite ply, as x1 is aligned with the fiber direction, x2 lies in the 
ply plane and x3 is perpendicular to the ply plane.  
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Figure 1. Composite material unit cell types analyzed in this work (75 x 75 subcells, Vf = 60%). 

 
The input variables for the HFGMC model are the current state of macroscopic strain, number 
of subcells (Nβ and Nγ), as well as parameters which define properties of the composite 
material – fiber and matrix mechanical properties and fiber volume fraction (Vf). Each subcell 
is selected to be a fiber or matrix constituent, based on the fiber volume fraction, number of 
fibers within the unit cell and position of fiber centers. At the current phase of the research 
dimensions of all subcells are equal and Nβ is equal to Nγ, since this generalization simplifies 
programming of the sparse implementation of the theory. Generally, the HFGMC theory 
places no restrictions on the shapes of the unit cell and refinement (Nβ and Nγ). 
 

 
Figure 2. Discretization sheme of the HFGMC model. 

 
As the theory of the reconstructed HFGMC micromechanical model is very complex, this 
work features only some basic equations which are necessary to get an insight into the 
procedure. More detailed explanation and discussion on the original and reconstructed 
HFGMC models can be found in [1,2,3,10]. 
The aim of the micromechanical analysis is to determine the fourth order strain concentration 
tensor ( , )A β γ , which relates the strain tensor of each subcell ( , )ε β γ  to the macroscopic strain 
field ε , after Equation 1 
 
      ( , ) ( , )=ε A εβ γ β γ .    (1) 
 
The displacement field within the unit cell is approximated using the same Legendre-type 
polynomial expansion of the original HFGMC, after [10]. 
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The first term on the right side of Equation 2 represents the contribution of the homogenized 
(averaged) strain, while the rest represents the fluctuating displacement field ( ( , )

iu′ β γ ). The W 
variables in Equation 2 are microvariables, which define the fluctuating displacement field 
within each subcell. These microvariables have to be determined in order to calculate the 
strain field within the unit cell. The solution of the micromechanical model begins by defining 
subcell local stiffness matrices, which are assembled into the global system by application of 
traction and continuity conditions at subcell interfaces and periodicity equations at unit cell 
boundaries, as explained in [1,2]. The global system of equations can be decoupled into axial 
and transverse sets of equations, after [3]. The components of strain tensor in Equations 3 and 
4 are referred to homogenized or equivalent deformations of the complete unit cell 
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The size of the global axial system of equations (Equation 3) is 2 2N N N N×β γ β γ , while the 
transverse system of equations (Equation 4) consists of 4 4N N N N×β γ β γ  elements. Global L 
and K matrices are assembled from subcell local stiffness matrices as explained in [2,3]. The 
submatrices ∆c  (in Equation 3) and ∆C  (in Equation 4) contain differences in elastic 
stiffness elements ( , )

ijC β γ  between adjacent subcells. The constitutive behavior of matrix 
subcells is assumed to be isotropic, while fiber subcells are orthotropic. The mechanical 
properties of the T300 carbon fiber and 5208 epoxy matrix are summarized in Table 1 [12 - 
14]. The equivalent properties of a CFRP composite with 70% fiber volume fraction 
calculated by the HFGMC are also listed in Table 1. 
The displacement vectors in Equations 3 and 4 are comprised of subcell fluctuating interface 
displacements. The solution of the global system of equations enables calculation of the 
displacement field within the unit cell. Once the solution of the unit cell displacement field 
has been obtained, microvariables W can be computed allowing calculation of strain tensor 
components using [3] 
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The strain concentration tensor is obtained using a numerical procedure explained in [2]. 
Finally, the average subcell stress field ( , )σ β γ  is computed based on subcell constitutive model 
and subcell strain tensors ( , )ε β γ  
 
     ( , ) ( , ) ( , )=σ C εβ γ β γ β γ .     (6) 
 
The unit cell macroscopic stresses can be obtained by averaging the microscopic stress over 
the unit cell using equation 
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while the equivalent elasticity tensor is calculated using Equation 10 
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T 300 fiber 5208 epoxy matrix T300/5208 composite 

1 258.57 GPaE =  3.4 GPaE =  1 182.61 GPaE  =  

2 3 18.69 GPaE E ==  0.35ν =  2 11.29 GPaE  =  

12 0.2ν =  50 MPamT  =  12 6.10 GPaG  =  

23 0.4ν =  100 MPamC =  12 0.237ν =  

12 19.68 GPaG =  25 MPaT =  23 0.391ν =  

Table 1. Fiber and matrix properties and HFGMC predicted composite properties.  
 
2.2 Micromechanical failure criteria 
Micromechanical failure criteria determine failure initiation within the unit cell at the micro 
constituent level (fiber or matrix). The attention in this work has been given to failure criteria 
associated with matrix failure. Based on a literature survey on micromechanical composite 
failure criteria for unidirectional composites, two criteria have been selected for 
implementation: 
 
1) 3-D Tsai –Hill criterion, after [7] 
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The 3D Tsai-Hill criterion has been used in [7] to predict transverse cracking in matrix 
constituent subcells. The Y variables in Equation 9 are matrix strengths (tensile - Tm or 
compressive - Cm), while T is the matrix shear strength. The necessary properties for 
calculation of failure criteria for the 5208 epoxy matrix are listed in Table 1. 
2) Micromechanics of Failure criterion for matrix failure (MMF), after [12] 
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where ( , )

VM
β γσ  is the equivalent subcell stress, while ( , )

1I
β γ  is the first invariant of the stress 

tensor of the subcell. Variables Tm and Cm in Equation 10 are matrix tensile and compressive 
strengths (such as listed in Table 1).  

 
3 Multiscale analysis 
The multiscale procedure has been tested on a simple composite plate. The plate consists of 
four unidirectional CFRP plies with the layup [90/45/45/90]. The thickness of each ply is 
0.125 mm, while the dimensions of the plate are 0.3 x 0.2 m. The orientation of the composite 
plies is measured with regard to the longer plate dimension (x-axis in Figure 3). The 
constitutive behavior of the homogenized CFRP material has been predicted by HFGMC for a 
composite with 70% fiber volume fraction. The equivalent properties have been calculated 
using a 100 x 100 unit cell with a single fiber at the unit cell centre and are summarized in 
Table 1. The leading idea behind this evaluation is to select a useful ply-level criteria which 
will trigger the HFGMC model and damage evolution procedure on the unit cell 
micromechanical model. Therefore, micromechanically calculated failure criteria of the 
matrix have been compared to the most commonly used ply level criteria (Tsai-Wu, Tsai Hill, 
Hashin and Puck). 
The finite element model (shown in Figure 3) consists of 150 S4R finite elements and 176 
nodes, resulting in 1056 degrees of freedom of the numerical model. In order to investigate 
the effect of unit cell refinement, three refinement levels have been selected in the two scale 
approach – 20 x 20 , 50 x 50 and 75 x 75. The composite plate has been loaded with a tensile 
force of 5500 N (500 N per node). 
 

 
Figure 3. Numerical model used for multiscale implementation. 

 
3.1 Implementation of HFGMC in Abaqus 
Abaqus user material subroutine VUMAT has been used to implement the micromechanical 
model into the finite element analysis. The work described in this paper is in the initial phase 
of implementation of the multiscale computational model, and therefore material properties 
have not been degraded due to damage effects. The HFGMC model is programmed as a 
subroutine which is called from within Abaqus/Explicit user material subroutine VUMAT. 
Input parameters in the subroutine are the current macroscopic strain state and parameters 
which define the unit cell (Nβ, Nγ, number and position of fiber etc.). The systems of 
Equations 3 and 4 result in highly sparsed matrices. In order to enable modeling of finer unit 
cells (and consequently solving larger systems of equations), a sparse implementation has 
been introduced to obtain solution of the HFGMC model. In addition to finer unit cell 
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discretization, sparse implementation of HFGMC resulted in significant improvement of 
computational time. The output from the HFGMC model are composite equivalent properties 
and maximal values of subcell micromechanical failure criteria. These values are stored in the 
VUMAT subroutine as state dependent variables (SDVs). 
 
4 Results 
In the analyzed load case, fiber failure is not likely to occur (maximal value of damage 
initiation criteria associated with fiber failure is 0.305 - Hashin's fiber tensile criterion), and 
therefore the attention has been redirected to matrix failure. The results of the applied 
micromechanical matrix failure criteria in the two-scale analysis have been summarized in 
Table 2. The values listed in Table 2 refer to the maximal results of state dependent variables 
associated with micromechanical matrix failure criteria of the finite element model.  
 

Unit cell 
type: Criterion: 20x20 50x50 75x75 

90° 45° 90° 45° 90° 45° 

 
3D TH 2.249 1.931 4.173 3.406 3.622 2.980 
MMF 3.500 3.130 8.798 6.841 6.963 5.571 

 
3D TH 2.243 1.926 4.171 3.405 3.201 2.660 
MMF 3.488 3.122 8.791 6.837 5.754 4.747 

 
3D TH 0.951 0.921 0.961 0.929 1.042 1.065 
MMF 1.197 1.241 1.219 1.264 1.414 1.460 

Table 2. Maximal values of micromechanical matrix failure criteria in the FE model. 
 

 
Figure 4. Comparison of failure initiation criteria - Puck's Mode A IFF criterion and micromechanical matrix 

failure criteria calculated on a 5-fibre unit cell with 75 x75 subcells. 
 
As indicated in Table 2, the results show significant discrepancies and dependence on both 
examined parameters - unit cell type and refinement of the HFGMC micromechanical model. 
Micromechanical failure criteria calculated using the unit cell with a central fiber and the 
morphology with fibers on the unit cell corners predict failure initiation at lower load states 
compared to the applied ply level criteria. As a consequence, the micromechanical failure 
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initiation criteria reach higher values (left-hand sides of Equations 9 and 10) in the finite 
element model and predict failure initiation over the entire FE model. In contrast, the unit cell 
with 5 fibers predicts lower values of matrix failure criteria compared to ply-level criteria, as 
shown in Figure 4. Figure 4 shows a comparison of the macromechanically calculated Puck's 
interfiber (IFF) Mode A criterion and both applied micromechanical failure theories for the 5 
fiber unit cell type discretized with 75 x 75 subcells. The 3D Tsai Hill and Micromechanics of 
Failure criteria predict failure initiation in a very similar portion of the finite element model, 
although at a much smaller part compared to the ply level Puck's criteria, especially for the 
45° plies. The contours of the micromechanically predicted failure criteria using the unit cells 
with a central fiber and the unit cells with fibers on the corners agree well with the contours 
shown in Figure 4 (for the unit cell with 5 fibers), while the values are much higher (as 
presented in Table 2). 
The material points of the finite element model with maximal values of the micromechanical 
matrix failure criteria are located in the corners of the composite plate, as shown in Figure 4. 
The distribution of the micromechanical matrix failure criteria within the unit cell has been 
evaluated for a material point of the FE model for which all applied ply level failure criteria 
(Tsai-Wu, Tsai-Hill, Hashin's matrix tensile and Puck's IFF Mode A criteria) reach, in the 
given load case, the critical value, thereby indicating initiation of damage processes. The 
distribution of matrix failure criteria within the three investigated unit cells, along with the 
effect of unit cell refinement is shown in Figures 5 and 6. 
 

 
Figure 5. Effect of unit cell type on 3D Tsai Hill criterion (HFGMC model with 75 x 75 subcells). 

 

 
Figure 6. Effect of unit cell refinement on distribution of Micromechanics of Failure matrix damage initiation 

criterion. 
 
The effect of unit cell type on the distribution of the 3-D Tsai-Hill criterion is shown in Figure 
5. The unit cell with a single fiber reaches the highest value of the criterion (1.779), followed 
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by the unit cell with fibers on the unit cell corners (1.588). These two unit cells show similar 
distribution of the matrix damage criteria, which is reasonable, since these two discretization 
schemes present the same composite system. The unit cell with fibers on the corners and in 
the centre of the unit cell shows the lowest value of the evaluated matrix failure criterion 
(1.386). The effect of unit cell refinement on the results is shown in Figure 6 on the example 
of the Micromechanics of Failure criterion and the unit cell with fibers on the corners and in 
the centre of the unit cell. The highest values of failure criteria are reached at the subcells in 
the areas of the unit cell where the distance between separate fibers is the least. The maximal 
values (1.398 for the 75 x 75 unit cell) are located in matrix subcells which directly surround 
the fiber. 
 
5 Conclusion 
This work presents results of the initial phase of implementation of the HFGMC model in an 
explicit finite element code. The HFGMC model has been used to calculate equivalent 
composite properties and micromechanical matrix failure criteria. In the ongoing research, the 
HFGMC model is employed to predict equivalent composite properties after damage 
initiation caused by impact loading, blast loads and similar high velocity / high strain 
phenomena.  
The results in this work indicate significant dependence of the micromechanical matrix failure 
criteria on the unit cell type and refinement. The micromechanical criteria on the HFGMC 
model tend to be more restrictive when compared to the most commonly used ply-based 
failure criteria as they reach critical values at lower loading states. An exception is the unit 
cell with fibers on unit cell corners and at the centre, which for a given loading state predicts 
lower values of matrix failure criteria. The effect of unit cell refinement on the values of 
failure criteria is not fully understood, but finer levels of the HFGMC mesh result in improved 
distribution of the micromechanical stresses thereby improving the distribution of failure 
criteria. A HFGMC mesh with smaller subcells will also allow more accurate modeling of 
damage processes in the continuation of present work. 
In order to develop the micromechanical failure prediction, further research will have to be 
performed. Ply level criteria indicate failure of the complete ply, whereas micromechanical 
criteria indicate failure at a much smaller level. Consequently, failure at the micro-level 
doesn't necessarily indicate failure of the complete ply. Therefore, a reasonable correlation 
between failure prediction on the micro-level and ply-level based failure criteria or 
experimental results is expected after inclusion of damage processes in the HFGMC model. 
Furthermore, the influence of the interphase at the matrix/fiber boundaries will have to be 
included in the micromechanical analysis, since effects at the interphase play a significant role 
in damage mechanisms of composite materials [15]. As illustrated by the failure criteria in 
Figures 5 and 6, maximal values of failure criteria are predicted in matrix subcells which 
surround the fibers, additionally indicating the importance of correct modeling of this area of 
the unit cell. Despite all problems encountered during the current work, the HFGMC presents 
a highly promising model for further development. 
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