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Abstract

In this paper, first we derive an explicit secular equation of Rayleigh waves whose
propagation direction being parallel to the fiber direction. Then, an exact formula for the
velocity is derived and two good approximations for it are created. Secondly, for the case of
the propagation direction of Rayleigh waves being oblique to the fiber direction, an explicit
secular equation has been obtained. The obtained explicit secular equations and formulas for
the velocity will be very useful for analyzing the effect of the material properties and the
orientation of the fiber direction on the Rayleigh wave propagation, especially they will be
powerful tools for solving the inverse problem: determining the material parameters from the
measured values of the velocity.

1 Introduction

The propagation of a Rayleigh-edge wave in a goaicmaterial direction of a thin semi-
infinite orthotropic panel, called a principal Raigh-edge wave, was investigated recently by
Cerv [1] and Cerv et al. [2]. The panel may be mitete, isotropic medium or slightly
anisotropic crystallic medium on one hand or a tellis structure with strong cubic
orthotropy on the other hand. The authors deritedsecular equations of the wave for both
types of material, and they are not the same. Thpagation of a non-principal Rayleigh-
edge wave, the wave whose propagation directiors du# coincide with the principal
material axes, in a thin semi-infinite orthotropanel was also investigated recently by
Ohyoshi [3] and Cerv et al. [2]. However, an explgecular equation of this wave has not
been yet obtained in both investigations.

In this paper we provide a secular equation forpiiecipal Rayleigh-edge waves that is the
same for all orthotropic elastic materials and muoubre simple than the ones obtained by
Cerv [1] and Cerv et al. [2]. An exact formula fie velocity of principal Rayleigh-edge
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waves are derived, and two approximate formulashiewelocity are established by using the
best approximate second-order polynomials in thernal [0, 1] of the cubic power [4]. It is
shown that they are good approximations. For namcjral Rayleigh-edge waves an explicit
secular equation is obtained by using the methduaistfintegrals [5, 6].

2 Principal Rayleigh-edge wavesin thin orthotropic media
2.1 Secular equation

Figure 1: The thin orthotropic panek, =0 with principal material axesX,Y,Z, the Z -
axis coincides with thex;-axis and coordinate systerfx,X,) is the rotated one from
(X,Y) by counter clockwise angfe

Consider a thin semi-infinite orthotropic mediunaiel) occupying the half-spaog =0, its
principal material axes arg -, X,- and x,-axis (Fig. 1 withd=0) and it is in the state of
plane stress:
03, =05,=05,=0 1)

The components of the stress tenapri, j =1,2 are related to the displacement gradients by
the following equations:

all = Bllu1,1+ Bly 2,2 o 22= B 1I2| 1]-.'-B H 2’,20 12=B g%l l,-Eu L (2)
whereu,, u, are displacement components, commas indicateréiffiation with respect to
partial variablesx, , B, are material (stiffness) coefficients which carefipressed in terms of
the engineering constants (Young's and shear mdeikson's ratios) as [2]:

V,.E %
Bll:_i’ 22:%’ B, = _21 L= Vs » Bgs =Gy, 3)
1 I/12V21 1 Vly 21 1 4 llf 21 1_V 1/2 21
and satisfy the inequalities:

B, >0,k=1,2,6,B,B,,-B > ( 4
which are necessary and sufficiently for the stemgrgy of the material to be positive define.
In the absence of body forces, equations of mairen

Ull,l+ 012,2 = lou i 012,l+ o 22,2: ﬂ"l (5)
here, a superposed dot signifies the differentiatidh respect to
the time t and p is the mass density. Substituting (2) into (5)dsesee also [1]):
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Bllul,ll+ Bﬁé"l 1,22+(B 12+ B GZU 2,12: pu 1

6
B66u2,1l+ Bzy 2,22+(B 12+ B GZU 1’12:pl'j ( )
These equations are taken together with the tradte®e condition:
0, =0,1=1,2 onx, = ( (7)
and the decay condition:
u=0,0,=0,i=12 onx, =+ (8)

We now consider the propagation of a principal Bayi-edge wave, travelling with the
velocity ¢ and the wave numblem the x -direction and exponentially decay in thg-

direction. The wave displacement components arglgon the form:

u =U,(y)explk —ct],i =1,2,y =kx, 9)
Following the same procedure carried out in [7 oan see that:
U, = Aexp(-s)y )+ A.expsy )U , =Ag,expfsy FAg ,exptsy (10)

wheres, s, are the roots of the equation:
82286654 +[( B+ 8692 +B 2£p02 -B 11 +B 6€pC2 -B fHSZ B 11_:0C2)( B ee_pczj 0(11)
having positive real parts to ensure the decayitond8), g, (k =1,2)is determined from:
1(By, + Bee) QS = B11_:0C2 _Bﬁeﬁf (12)
and the constantg, are determined from the boundary condition (7)tfen; if a Rayleigh-
edge wave exists, then its velocity is a solutibthe equation:

(Bee - pcz)[sz - Bzz( Bn_pcz)] +p(:2\/ B 25 65\/( B 11—[703( B 66-,0C") (13)
which satisfies:

0< p¢? < Min{B,, Beg (14)
Equation (13) is the secular equation of the waVe.note that Chadwick [8] has shown that
for B, B,,, B¢, B, satisfying (4), the conditions (13) and (14) suéficient for the unique
existence of Rayleigh-edge waves.
Remark 1.
1) Itis clear that the secular equation (13) ischnmore simple than the secular equations
(13) in Refs [1, 2] and (21) in Ref. [1] obtainestently by Cerv [1] and Cerv et al. [2].
i) The secular equation (13) is valid for any otilopic elastic materials.
2.2 An exact formula for the velocity
According to Vinh and Ogden [7], if a Rayleigh-edgave exists, then its velocity
is determined by:

x= pc? | B, :«/51b2b3/[(«/51/3)(bp3+ 2)+JR+/D +IR ~/D } (15)
whereb =B,,/B,,b,=1-B%,/(B,B,),b ,=B /B R and D are given by:

1
R= 54 h(b,,b,,b,)

(16)
1
=~ 55 2B (1=5,)00, b, )+ 2, (1D, § +b, (1D . + 4
in which:
h(b,b,,b;) = \/Bl [2b1(1_bp3)3 +9(D,-bp - 2)] (17)

and the roots in (15) taking their principal valukss clear that the squared dimensionless
Rayleigh wave velocity is a continuous function of three dimensionlessupetersb,,b,,b,
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which must be satisfied the inequalitids>0; b, >0; andb, >0 according to (4). On view
of (3), three dimensionless paramethrsare expressed in terms Bf, E,, G,, v,, as:

2 2
bl:E,bzzl—Ezvlz, )y = E;_
E E G(Evi,~E)

(18)

It would be worth to note that for some other etashedia, the exact formulas for the
Rayleigh wave velocity have been derived recesty Refs. [9, 10, 11], for examples.

2.3 Approximate formulas for the vel ocity

On view of (14), Eq. (13) is equivalent to the eifa

\/BGG_X(BZZX _512)+x\/BZZBGG\/Bll_X =0 (19)
where X = pc?, J,, =B, B,,—BZ,. After squaring and rearranging Eq. (19) becomes:
B,,(B,, - Bee)X3 +B (BB B B es20 ]}xz +0 (0 .,#2B B )X -B Eg 70 (20)
Dividing two sides of Eq. (20) byB,,)° (> 0) leads to:
m,x* + mx* +mx +m, =0, 0 <x =X /B, <1 (21)

where:

m, = b1b3(1_b1b3)’ m, :bpé(l_bl_sz p 3)’m 1:b2p stb Q st 3)’m 0 -b29294 (22)
According to Vinh and Malischewsky [4], in the intal [0, 1], the best approximate second-
order polynomial ok® in the sense of least squares is:

1.5x* — 0.6+ 0.0¢ (23)
Introducing (23) into (21) yields a quadratic egoat namely:
(m, +1.5m,)x* - (0.6m, —m, X +m, + 0.0%n, = ( (24)

whose solution corresponding to the Rayleigh-edgeenws:

= B-+B?-4AC

2A

(25)
where:
A=Dbb[b,(1+0.5, - Dpp,)-1.5],
B =b,[0.6(bb,~1)-bp P50 b, +2)], (26)
C =0.05b, pb, -3 -bibdy
If we use the best approximate second-order polyalash x* in the spaceC[0,1], namely:
1.5x° - 0.5625% + 0.0312 (see [4]), therx is given by (25) in which:
A=bb,[b,(1+0.50, - Dpp,)-1.5],
B =ib,[0.5625pp, - 1)-bpp bp,+ 2)] (27)
C =0.0312%b, bp,— 1-b’bip? .
As a check, we employ the obtained formulas focudating v/x =cg/c, for the materials
mentioned in [1] (see Figures 4, 5, 6, 12, 14,rH@]), wherec, is the velocity of Rayleigh-
edge wavesc, =B,/ p. By x, x,, X, and x_,, we denote the value ok that is

calculated respectively by the exact formula (1§)the approximate formula (25), (26), by
approximate formula (25), (27) and by Cerv [1] lojvéng the secular equations (13), (21) in
Ref. [1]. The results are presented in Table 1.eNibat for givenE, E,, G, V,, the

dimensionless parametelns b,, b, are calculated by (18). It is shown from the tabtbat the
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approximations (25), (26) and (25), (27) are goadso With the help of the exact formula
(15) or the approximate formulas (25), (26)and (25), (27) the study of the effect of material
properties on the Rayleigh-edge wave vel ocity becomes much more easy.

Material ﬁgi% \é\é?;fgf‘arl')’ Fibredx- | a-Fe | silicon| Al e
E (GPa) e 4231 115 | 156.48| 14141  53.48
E, (GPa) 5.5 423.1 885  |156.48| 14141  53.48
G, (GPa) 2.2 152 5.08 116 | 796 42
v,,(GPa) 0.34 0.396 0.287 | 0597 | 0.386 | 0844
pkgm™) 1380 19300 1560 | 7875 | 2330 | 19300
Jx 0.9949 0.9244 0.9873 | 07633.8414] 07321
NEw 0.9949 0.9238 0.9873 | 0.7619.8387| 07308
I 0.9949 0.9228 0.9873 | 0.7608.8377| 07305
N 0.995 0.924 0987 | 076 084 .78

Table 1. Values of+/x = C:/ ¢, (c; =4/Bg ! p) corresponding to the materials mentioned in Ref.
[1]: \/Z calculated by the exact formula (15))(6Il calculated by the approximate formula (25), (26),

\JX,, calculated by approximate formula (25), (ZM obtained by Cerv by solving the secular
equationg13), (21) in Ref. [1]

3 Non-principal Rayleigh-edge wavesin thin orthotropic media
3.1 Basic equations

Consider a thin homogeneous orthotropic elasticepatcupying the half-space
X, 2 0 whose principal material axes ateY,Z. Suppose that th& -axis coincides with the

X,-axis and coordinate syste(w, x,) is the rotated one fronGX,Y) by counter clockwise

angle @ (see Fig. 1). Suppose that the panel is subjectgtie plane stress state (1). The
stress-strain relation in principal material axesy has the form [2, 3]:

Oxx = Bilgxx + BlZ£W’ Ow = Blzgxx +Bz§w' Oyy =2B 66Xy (28)
where B; are given by (3) in whicl,, E,v,,,v,,,G,, are understood as
E., E/ .Vy Vi Gy » respectively. In theg, x, coordinate system it holds [2, 3]:
011 = Q11511+Q12£ 22+ 2Q 1§ 12
022 = Q12811+Q22‘: 22+ 2Q 2§ 1 (29)

012 = Q16‘911+Q26g 22+2Q 6§ 1z
where [3]:
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Q,=B,c, +2(B,,+2B)cs; +B s,

Q22 = B115;1 + 2(BlZ + ZB 66)C§S€2 + B 293’

Q,=(B,*B,, _4BGG)C§S§ +B ﬂcg +S;'),

Q, = (B, +B,,—2B,,—2B Jcos; +B .{C; +S;),

le = _(Bn —-B,, _ZBGG)CZSG -(B "B 22+ZB 690552,

Qs = ~(Byy —By, =2Bo)C,S; —(By, —B 5, +2B )cs,
in which ¢,:=cosf, s,:=sind (0<f< ) and the straing; are expressed in terms of the

(30)

displacement gradients,  as:
€=Uy €=Uy, E,= (U 51U ,) /2 (31)
In the absence of body forces, equations of matren3]:
Jll,l+ 012,2 = pu 2 012,1+ o 22,2: pu : (32)
Following the same procedure carried out in [1Zti®a 2], from Eqs(29), (31) and (32) we

have:
{u} :N{u} (33)

where u=[u,u,]’, o0 =[0,,0,]", the symbolT indicates the transpose of matrices, the
prime indicates differentiation with respectxpand:

L NZ] Nl{(dlld)a1 —al] \ _E{sz -st]

KN, ~(d,/d)a, O 27 d|-Qy Qe -
« =| P01 A)0; 02] N, =N
0 t

Here we use the notationd; = 8/ (dx,),d> = 0>/ (0x?),8> =07/ (& *) and:
d :szQes_Qiﬁl d1:Q1Q 26~ Q L 16d QR Q¢ Zﬁd 7Q q1+Q qe Q d;2(35)

In addition to Eq. (33), the displacement veatornd the traction vectar are required to
satisfy the decay condition at the infinity:

u(+) =0, o (+«) =0 (36)
and the free-traction condition at the edge=0:
0(0)=0 (37)

3.2 Explicit secular equation
Now we consider the propagation of a Rayleigh waeeelling with velocityc and wave
numberk in the x -direction. The components, u, of the displacement vector amd,, 0,

of the traction vector at the plangs= const are found in the form:
{Uy Uy 035 023( %, X, 9 H{UGKK), U (), ikZ(k), ikZ(hx)je (38)
Substituting (38) into (33) yields:

HE

where U =[U,U,]", = =[% 5]", and:
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M:|:Ml Mz} M :{ d1/d _l} M zi{sz _Qze}
Q M,|" ' |-dyd 0] ? d|-Q Q]
[ X-dy/d O
{ 0 X

the prime in Eq. (39) indicates differentiation ttwrespect toy = kx,. From(40), one can see

that the characteristic equatiphM — pl |= 0 of Eg. (39) is a fully quartic equation fgr (see
also [3]), therefore the explicit secular equatmithe wave could not be derived by the
traditional approach. In order to obtain it we veithployed the method of first integrals [5, 6].
EliminatingU from(39), we have:

(40)
}, M, =M/

as’ -ips -y~ =0 (41)
where the matrice&, 3, y are given by:
d
a=qt=| X% (42)
o X
X
2d, 1 d,
L dX -d, X dX —d,
B=MQ+QM, = (43)
14, 0
X dX-d,
dl2 +i_Q22 _ d1dz +Q26
Y=MQM,~M, = d(dX-d,) X d d(dXZ—ds) d (44)
__dd, ,Q, d Qs
d(dX-d,) d d(dX-d;) d
Note thata, S,y are symmetric real matrices. From (36)-(38) itdats:
>(0) =3 (+») =0 (45)
It is not difficult to verify that from (41) andib) it follows (see also [6]):
all ﬁll yl
ay, B, V=0 (46)
a22 1822 y2

Introducing (42)-(44) into (46) yields:
F(X’B) = dXZ[(d +d2)x _dg][d22 _QG& dx -d Q]

+(dX _ds)[(d +d2)X _da][Q22dx2 _(dz +df +Q2Q2X +dd]3 (47))

_Zdlxz(dx —d,)[Qe(dX ~dy —dd ] =0
Equation (47) is the desired explicit secular eiqueand it is a quartic equation f&r= pc?.
It is not difficult to verify that

C:(68)=cy (-6 and if B, =B,, thenc, @)=c, (7/2- 8 (48)

where ¢, is the velocity of Rayleigh-edge waveékhe explicit secular equations (47) is a

convenient tool for analyzing the effect of the orientation of principal material directions as
well as of the material properties on the velocity of Rayleigh-edge waves. They can also be
used to solve the inverse problems. determining the material parameters from measured
values of the velocity.
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4 Conclusions

In this paper we arrive at a secular equatiorpforcipal Rayleigh-edge waves that is valid
for all orthotropic elastic materials and much msiraple than the ones obtained recently by
Cerv [1] and Cerv et al. [2]. Exact and approximitemulas for the velocity of principal
Rayleigh-edge waves are also established and tieey powerful tool for analyzing the effect
of material parameters on the Rayleigh-edge wal@cig. For non-principal Rayleigh-edge
waves a secular equation in explicit form is olediby using the method of first integrals.
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