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Abstract   
In this paper, first we derive an explicit secular equation of Rayleigh waves whose 
propagation direction being parallel to the fiber direction. Then, an exact formula for the 
velocity is derived and two good approximations for it are created. Secondly, for the case of 
the propagation direction of Rayleigh waves being oblique to the fiber direction, an explicit 
secular equation has been obtained. The obtained explicit secular equations and formulas for 
the velocity will be very useful for analyzing the effect of the material properties and the 
orientation of the fiber direction on the Rayleigh wave propagation, especially they will be 
powerful tools for solving the inverse problem: determining the material parameters from the 
measured values of the velocity. 

 
 

1 Introduction   
The propagation of a Rayleigh-edge wave in a principal material direction of a thin semi-
infinite orthotropic panel, called a principal Rayleigh-edge wave, was investigated recently by 
Cerv [1] and Cerv et al. [2]. The panel may be a laminate, isotropic medium or slightly 
anisotropic crystallic medium on one hand or a crystallic structure with strong cubic 
orthotropy on the other hand. The authors derived the secular equations of the wave for both 
types of material, and they are not the same. The propagation of a non-principal Rayleigh-
edge wave, the wave whose propagation direction does not coincide with the principal 
material axes, in a thin semi-infinite orthotropic panel was also investigated recently by 
Ohyoshi [3] and Cerv et al. [2]. However, an explicit secular equation of this wave has not 
been yet obtained in both investigations. 
In this paper we provide a secular equation for the principal Rayleigh-edge waves  that is the 
same for all orthotropic elastic materials and much more simple than the ones obtained by 
Cerv [1] and Cerv et al. [2]. An exact formula for the velocity of principal Rayleigh-edge 
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waves are derived, and two approximate formulas for the velocity are established by using the 
best approximate second-order polynomials in the interval [0, 1] of the cubic power [4]. It is 
shown that they are good approximations. For non-principal Rayleigh-edge waves an explicit 
secular equation is obtained by using the method of first integrals [5, 6].  

 
2 Principal Rayleigh-edge waves in thin orthotropic media 
2.1 Secular equation 

x
1
 

x
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0 

X 

Y 

θ 

θ 

 
Figure 1: The thin orthotropic panel 2 0x ≥  with principal material axes , ,X Y Z , the Z -

axis  coincides with the 3x -axis and coordinate system 1 2( , )x x  is the rotated one from 

( , )X Y  by counter clockwise angleθ . 

 
Consider a thin semi-infinite orthotropic medium (panel) occupying the half-space 2 0,x ≥  its 

principal material axes are 1x -, 2x - and 3x -axis (Fig. 1 with 0θ = ) and it is in the state of 

plane stress: 
 31 32 33 0σ σ σ= = =  (1) 

The components of the stress tensor , , 1,2ij i jσ =  are related to the displacement gradients  by 

the following equations: 
 11 11 1,1 12 2,2 22 12 1,1 22 2,2 12 66 1,2 2,1, , ( )B u B u B u B u B u uσ σ σ= + = + = +  (2) 

where 1 2,u u   are displacement components, commas indicate differentiation with respect to 

partial variables ,k ijx B are material (stiffness) coefficients which can be expressed in terms of 

the engineering constants (Young's and shear moduli, Poisson's ratios) as [2]: 

 1 1 21 1 12 2
11 22 12 66 12

12 21 12 21 12 21 12 21

, , ,
1 1 1 1

E E E E
B B B B G

ν ν
ν ν ν ν ν ν ν ν

= = = = =
− − − −

 (3) 

and satisfy the inequalities: 
 2

11 22 120, 1,2,6, 0kkB k B B B> = − >  (4) 

which are necessary and sufficiently for the strain energy of the material to be positive define. 
 In the absence of body forces, equations of motion are: 
 11,1 12,2 1 12,1 22,2 2,u uσ σ ρ σ σ ρ+ = + =&& &&  (5) 

here, a superposed dot signifies the differentiation with respect to 
the time  t   and ρ  is the mass density. Substituting (2) into (5) yields (see also [1]): 
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11 1,11 66 1,22 12 66 2,12 1

66 2,11 22 2,22 12 66 1,12 2

 ( )

( )

B u B u B B u u

B u B u B B u u

ρ
ρ

+ + + =
+ + + =

&&

&&
 (6) 

These equations are taken together with the traction-free condition: 
 2 20, 1,2 on 0i i xσ = = =  (7) 

and the decay condition: 
 2 20, 0, 1,2 oni iu i xσ= = = = +∞ (8) 

We now consider the propagation of a principal Rayleigh-edge wave, travelling with the 
velocity c and the wave number k in the 1x -direction and exponentially decay in the 2x -

direction. The wave displacement components are sought in the form: 
 1 2( )exp[ ], 1,2,i iu U y kx ct i y kx= − = =  (9) 

Following the same procedure carried out in [7]  one can see that: 
 1 1 1 2 2 2 1 1 1 2 2 2exp( ) exp( ), exp( ) exp( )U A s y A s y U A q s y A q s y= − + − = − + −  (10) 

where 1 2,s s  are the roots of the equation: 

 4 2 2 2 2 2 2
22 66 12 66 22 11 66 66 11 66[( ) ( ) ( )] ( )( ) 0B B s B B B c B B c B s B c B cρ ρ ρ ρ+ + + − + − + − − = (11) 

having positive real parts to ensure the decay condition (8), ( 1,2)kq k = is determined from: 

 2 2
12 66 11 66( ) k k ki B B q s B c B sρ+ = − −  (12) 

and the constants kA are determined from the boundary condition (7). Further, if a Rayleigh-

edge wave exists, then its velocity is a solution of the equation: 

 2 2 2 2 2 2
66 12 22 11 22 66 11 66( )[ ( )] ( )( )B c B B B c c B B B c B cρ ρ ρ ρ ρ− − − + − −  (13) 

which satisfies: 
 2

11 660 min{ , }c B Bρ< <  (14) 

Equation (13) is the secular equation of the wave. We note that Chadwick [8] has shown that 
for 11 22 66 12, , ,B B B B  satisfying (4), the conditions (13)  and (14) are sufficient for the unique 

existence of Rayleigh-edge waves. 
Remark 1.  
i)  It is clear that the secular equation (13) is much more simple than the secular equations  
(13) in  Refs [1, 2] and (21) in Ref. [1] obtained recently by  Cerv [1] and Cerv et al. [2]. 
ii) The secular equation (13) is valid for any orthotropic elastic materials. 
2.2 An exact formula for the velocity 
According to Vinh and Ogden [7], if a Rayleigh-edge wave exists, then its velocity 
is determined by: 

 3 32
1 166 2 3 2 3/ / ( / 3)( 2)x c B b b b b b b R D R Dρ  = = + + + + −

  
 (15) 

where 2
1 22 11 2 12 11 22 3 11 66/ , 1 / ( ), / ,b B B b B B B b B B R= = − =  and D  are given by: 

1 2 3

2 2
1 2 1 2 3 1 2 1 2 3

1
( , , )

54
1

2 (1 ) ( , , ) 27 (1 ) (1 ) 4
108

R h b b b

D b b h b b b b b b b b

= −

 = − − + − + − + 

             (16) 

in which: 

 3
11 2 3 1 2 3 2 2 3( , , ) [2 (1 ) 9(3 2)]h b b b b b b b b b b= − + − −  (17) 

and the roots in (15) taking their principal values. It is clear that the squared dimensionless 
Rayleigh wave velocity x  is a continuous function of three dimensionless parameters 1 2 3, ,b b b  
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which must be satisfied the inequalities: 1 0b > ; 2 0b > ; and 3 0b >  according to (4). On view 

of (3), three dimensionless parameters kb  are expressed in terms of 1E , 2,E  12,G 12ν  as: 

 
2 2

2 2 12 1
1 2 3 2

1 1 12 1 12 2

, 1 ,
( )

E E E
b b b

E E G E E

ν
ν

= = − =
−

 (18) 

 
It would be worth to note that for some other elastic media, the exact formulas for the 
Rayleigh wave velocity have been derived recently, see Refs. [9, 10, 11], for examples. 
2.3 Approximate formulas for the velocity 
On view of (14), Eq. (13) is equivalent to the equation: 

66 22 12 22 66 11 0( )B X B X X B B B Xδ− − + − =                                    (19) 

where 2 2
12 11 22 12,X c B B Bρ δ= = − . After squaring and rearranging Eq. (19) becomes: 
3 2 2

22 22 66 22 11 66 22 66 12 12 12 22 66 22 12( ) ( 2 ) ( 2 ) 0B B B X B B B B B X B B X Bδ δ δ δ− + − − + + − =          (20) 

Dividing two sides of Eq. (20) by 5
66( ) ( 0)B >   leads to: 

3 2
3 2 1 0 660, 0 / 1m x m x m x m x X B+ + + = < = <                             (21) 

where: 
 2 2 3 2 2 4

3 1 3 1 3 2 1 3 1 1 2 3 1 1 2 3 2 3 0 1 2 3(1 ), (1 2 ), ( 3),m b b b b m b b b b b b m b b b b b m b b b= − = − − = + = −  (22) 

According to Vinh and Malischewsky [4], in the interval [0, 1], the best approximate second-
order polynomial of 3x  in the sense of least squares is: 

21.5 0.6 0.05x x− +                                                      (23) 
Introducing (23) into (21) yields a quadratic equation, namely: 
 2

2 3 3 1 0 3( 1.5 ) (0.6 ) 0.05 0m m x m m x m m+ − − + + =  (24) 

whose solution corresponding to the Rayleigh-edge wave is: 

 
2 4

2

B B AC
x

A

− −=  (25) 

where: 

1 3 3 1 1 2 3

2
1 3 1 3 1 2 3 2 3

2 2 4
1 3 1 3 1 2 3

[ (1 0.5 2 ) 1.5],

[0.6( 1) ( 2)],

0.05 ( 1

 

.)

A b b b b b b b

B b b b b b b b b b

C b b b b b b b

= + − −

= − − +

= − −

                                       (26) 

If we use the best approximate second-order polynomial of 3x  in the space [0,1]C , namely: 
21.5 0.5625 0.03125x x− +  (see [4]), then x  is given by (25) in which: 

 
1 3 3 1 1 2 3

2
1 3 1 3 1 2 3 2 3

2 2 4
1 3 1 3 1 2 3

[ (1 0.5 2 ) 1.5],

[0.5625( 1) ( 2)],

0.03125 ( 1 .)

A b b b b b b b

B b b b b b b b b b

C b b b b b b b

= + − −

= − − +

= − −

 (27) 

As a check, we employ the obtained formulas for calculating /R Tx c c=  for the materials 

mentioned in [1] (see Figures 4, 5, 6, 12, 14, 16 in [1]), where Rc  is the velocity of Rayleigh-

edge waves, 66 /Tc B ρ= . By ex , 1ax , 2ax  and cervx  we denote the value of x  that is 

calculated respectively by the exact formula (15), by the approximate formula (25), (26), by 
approximate formula (25), (27) and by Cerv [1] by solving the secular equations (13), (21) in 
Ref. [1]. The results are presented in Table 1. Note that for given 1 2 12 12, ,,E E G ν , the 

dimensionless parameters 1 2 3, ,b b b  are calculated by (18). It is shown from the table 1 that the 
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approximations (25), (26) and (25), (27) are good ones.  With the help of the exact formula 
(15) or the approximate formulas (25), (26) and (25), (27), the study of the effect of  material 
properties on the Rayleigh-edge wave velocity becomes much more easy. 
 

Material 
Kevlar-
Epoxy 

(Aramid) 

Wolfram 
(crystal) 

Fibredux -
914-C 

α -Fe Silicon 
Crystal  line 

Gold 

1E  (GPa)  

2E  (GPa) 

12G (GPa)  

12(GPa)ν  

ρ (kg 3m− ) 

87 

5.5 

2.2 

0.34 

1380 

423.1 

423.1 

152 

0.396 

19300 

115 

8.85 

5.08 

0.287 

1560 

156.48 

156.48 

116 

0.597 

7875 

141.41 

141.41 

79.6 

0.386 

2330 

53.48 

53.48 

42 

0.844 

19300 

ex  0.9949 0.9244 0.9873 0.7633 0.8414 0.7321 

1ax  0.9949 0.9238 0.9873 0.7613 0.8387 0.7308 

2ax  0.9949 0.9228 0.9873 0.7608 0.8377 0.7305 

cervx  0.995 0.924 0.987 0.76 0.84 0.73 

 

Table 1. Values of 66/ ( / )R T Tx c c c B ρ= = corresponding to the materials mentioned in Ref. 

[1]: ex  calculated by the exact formula (15), 1ax calculated by the approximate formula (25), (26), 

2ax  calculated by approximate formula (25), (27), cervx obtained by Cerv by solving the secular 

equations (13), (21) in Ref. [1]. 
 
3 Non-principal Rayleigh-edge waves in thin orthotropic media 
3.1 Basic equations 

Consider a thin homogeneous orthotropic elastic panel occupying the half-space 

2 0x ≥  whose principal material axes are, , .X Y Z  Suppose that the Z -axis  coincides with the 

3x -axis and coordinate system 1 2( , )x x  is the rotated one from ( , )X Y  by counter clockwise 

angle θ  (see Fig. 1). Suppose that the panel is subjected to the plane stress state (1). The 
stress-strain relation in principal material axes ,X Y  has the form [2, 3]: 

 11 12 12 22 66, , 2XX XX YY YY XX YY XY XYB B B B Bσ ε ε σ ε ε σ ε= + = + =  (28) 

where  ijB  are given by (3) in which 1 12 21 12, , , ,E E Gν ν  are understood as 

, , , ,X Y XY YX XYE E Gν ν , respectively. In the 1 2,x x  coordinate system it holds [2, 3]: 

 
11 11 11 12 22 16 12

22 12 11 22 22 26 12

12 16 11 26 22 66 12

2

2

2

Q Q Q

Q Q Q

Q Q Q

σ ε ε ε
σ ε ε ε
σ ε ε ε

= + +
= + +
= + +

 (29) 

where [3]: 
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4 2 2 4
11 11 12 66 22

4 2 2 4
22 11 12 66 22

2 2 4 4
12 11 22 66 12

2 2 4 4
66 11 22 12 66 66

3 3
16 11 12 66 12 22 66

2

2( 2 )

2( 2 )

( 4 ) ( ),

( 2 2 ) (

,

,

,

),

( 2 ) ( 2 )

Q B c B B c s B s

Q B s B B c s B c

Q B B B c s B c s

Q B B B B c s B c s

Q B B B c s B B B c s

Q

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

= + + +

= + + +

= + − + +

= + − − + +

= − − − − − +
3 3

6 11 12 66 12 22 66( 2 ) ( 2 )B B B c s B B B c sθ θ θ θ= − − − − − +

 (30) 

in which : cos ,cθ θ=  : sinsθ θ=  (0 )θ π≤ ≤  and the strain ijε  are expressed in terms of the 

displacement gradients ,m nu  as: 

 11 1,1 22 2,2 12 1,2 2,1, , ( ) / 2u u u uε ε ε= = = +  (31) 

In the absence of body forces, equations of motion are [3]: 

 
¨ ¨

11,1 12,2 1 12,1 22,2 2,u uσ σ ρ σ σ ρ+ = + =  (32)  

Following the same procedure carried out in [12, Section 2], from Eqs. (29), (31)  and (32) we 
have: 

 
uu

N
σσ

′

′

   
=   

  
 (33)  

where  1 2 12 22[ , ] , [ , ]T Tu u u σ σ σ= = , the symbol T  indicates the transpose of matrices, the 

prime indicates differentiation  with respect to 2x  and: 

 

1 2 22 261 1 1
1 2

3 26 662 1

2 2
3 1

3 12

( / ) 1
, , ,

( / ) 0

( / ) 0
,

0
Tt

t

N N Q Qd d
N N N

K N Q Qd d d

d d
K N N

ρ
ρ

−∂ −∂    
= = =     −− ∂    

 ∂ − ∂
= = ∂ 

 (34) 

 

Here we use the notations: 2 2 2 2 2 2
1 1 1 1/ ( ), / ( ), / ( )tx x t∂ = ∂ ∂ ∂ = ∂ ∂ ∂ = ∂ ∂  and: 

 2
22 66 26 1 12 26 22 16 2 12 66 16 26 3 11 16 1 12 2, , ,d Q Q Q d Q Q Q Q d Q Q Q Q d Q d Q d Q d= − = − = − = + − (35) 

In addition to Eq. (33), the displacement vector u  and the traction vector σ  are required to 
satisfy the decay condition at the infinity: 
 ( ) 0, ( ) 0u σ+∞ = +∞ =  (36) 

and the free-traction condition at the edge 2 0x = : 

 (0) 0σ =  (37) 
3.2 Explicit secular equation 
Now we consider the propagation of a Rayleigh wave, travelling with velocity c  and wave 
number k  in the 1x -direction. The components 1 2,u u of the displacement vector and 12 22,σ σ  

of  the traction vector at the planes 3 constx =  are found in the form: 

 1( )
1 2 12 22 1 2 1 2 2 2 1 2 1 2{ , , , }( , , ) { ( ), ( ), ( ), ( )}e ik x ctu u x x t U kx U kx ik kx ik kxσ σ −= Σ Σ  (38) 

Substituting  (38) into  (33) yields: 

 
UU

iM
′

′

   
=   ΣΣ   

 (39) 

where  1 2 1 2[ ] , [ ]T TU U U= Σ = Σ Σ , and: 
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1 2 22 261
1 2

3 26 662

3
3 1

/ 1 1
, , ,

/ 0

/ 0
,

0
T

M M Q Qd d
M M M

Q M Q Qd d d

X d d
Q M M

X

−−    
= = =     −−    

− 
= = 
 

 (40) 

the prime in Eq. (39) indicates differentiation  with respect to 2y kx= . From(40), one can see 

that the characteristic equation | | 0M pI− =  of Eq. (39) is a fully quartic equation for p   (see 
also [3]), therefore the explicit secular equation of the wave could not be derived by the 
traditional approach. In order to obtain it we will employed the method of first integrals [5, 6]. 
Eliminating U  from(39), we have: 
 0iα β γ′′ ′Σ − Σ − Σ =  (41) 
where the matrices , ,α β γ  are given by: 

 1 3

0

1
0

d

dX d
Q

X

α −

 
 −
 = =
 
  

 (42) 

 

1 2

3 31 1
1 3

2

3

2 1

1
0

d d

dX d X dX d
M Q Q M

d

X dX d

β − −

 − − − −
 = + =
 − − − 

 (43) 

 

2
261 22 1 2

3 31
1 3 2 2

26 661 2 2

3 3

1

( ) ( )

( ) ( )

Qd Q d d

d dX d X d d dX d d
M Q M M

Q Qd d d

d dX d d d dX d d

γ −

 
+ − − + − − = − =

 
− + − 

− − 

 (44) 

Note that , ,α β γ  are symmetric real matrices. From (36)-(38) it follows: 
 (0) ( ) 0Σ = Σ +∞ =  (45) 
It is not difficult to verify that from (41)  and (45) it follows (see also [6]): 

 
11 11 11

12 12 12

22 22 22

0

α β γ
α β γ
α β γ

=  (46) 

Introducing   (42)-(44) into (46) yields: 

 

2 2
2 3 2 66 3

2 2 2
3 2 3 22 1 22 3 3

2
1 3 26 3 1 2

( , ) [( ) ][ ( )]

( )[( ) ][ ( ) ]

2 ( )[ ( ) ] 0

F X dX d d X d d Q dX d

dX d d d X d Q dX d d Q d X dd

d X dX d Q dX d d d

θ ≡ + − − −

+ − + − − + + +

− − − − =

 (47)) 

Equation (47) is the desired explicit secular equation and it is a quartic  equation for 2.X cρ=   
It is not difficult to verify that 
 11 22( ) ( ) and if then ( ) ( / 2 )R R R Rc c B B c cθ π θ θ π θ= − = = −  (48) 

where Rc  is the velocity of Rayleigh-edge waves. The explicit secular equations (47) is a 

convenient tool for analyzing the effect of the orientation of  principal material directions as 
well as of the material properties on the velocity of Rayleigh-edge waves. They can also be 
used to solve the inverse problems: determining the material parameters from measured 
values of the velocity.  
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4 Conclusions 
In this paper we arrive at  a secular equation for principal Rayleigh-edge waves that is valid 
for all orthotropic elastic materials and much more simple than the ones obtained recently by 
Cerv [1] and Cerv et al. [2]. Exact and approximate formulas for the velocity of principal 
Rayleigh-edge waves are also established and they are a powerful tool for analyzing the effect 
of material parameters on the Rayleigh-edge wave velocity. For non-principal Rayleigh-edge 
waves a secular equation in explicit form is obtained by using the method of first integrals. 
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