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Abstract
The aim of this paper is to present an inverse approach dedicated to the exploitation of full-field
measurements, to identify elastic properties of heterogeneous materials, such as composites, in the
static case. The method is based on the modified constitutiverelation error principle and could be
split in two steps. The first one consists in defining mechanical fields from the available theoretical
and experimental data, for a fixed set of mechanical parameters, by the minimization of a criterion
allowing a compromise between constitutive equation and measurements adequacy. The second
step takes the form of minimizing a cost function defined by using these fields, to identify the
sought material properties. Moreover, the robustness of the method was tested on some numerical
examples where white Gaussian perturbations were added to the displacement field to simulate an
experimental errors.

1 Introduction

The intensive use of composite materials in aeronautic industry requires the knowledge of the pa-
rameters governing the mechanical constitutive material behavior. When focusing on their elastic
behavior, composite materials have generally heterogeneous properties. It is then necessary to
characterize them in a reliable way. Full-field measurements are often needed to exploit heteroge-
neous tests, hardly possible with classic measure tools like extensometric gages which provide a
limited number of measurement points. It leads to the development of digital images correlation
(DIC) techniques [1, 2, 3], which constitute one of the main breakthroughs of the last 30 years.
Thus, it is necessary to develop identification strategies adapted to the fullness of this type of mea-
surements, and based on inverse approaches.
Besides, measurement perturbations, which are inherent inexperimental tests, affect the accuracy
of the identified properties, especially in elasticity, when the magnitude of strain fields is relatively
low. Thus, it is important to take them into account and use a strategy which is less dependent on
perturbations.
Numerous identification methods have been proposed and adapted to the use of full-field measure-
ments. A review of the most widespread methods (Finite Element Model Updating (FEMU), Vir-
tual Fields Method, Equilibrium Gap Method, Reciprocity Gap Method and Constitutive Relation
Error (CRE)) can be found in [4]. Among the identification procedures, the so-called modified con-
stitutive relation error (MCRE) turns out as a robust methodtowards measurements perturbations
[5]. At first, it was used for model updating in vibration dynamics within a validation framework
[6, 7]. Then, the method was adapted to the exploitation of full-field measurements in [8, 9, 10].
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The present paper presents a formulation of an identification problem based on the MCRE, lead-
ing to the minimization of a cost function composed of two parts. One related to the constitutive
equation and another to the distance between the simulationand the experimental measurements.
An important point to be noted is that the modeling of the boundary conditions represents a short-
coming of some inverse methods. The present formulation allows identification even if they are
not available. No hypothesis on boundary conditions is thusrequired, for example to take into
account the distribution of the load on a sample boundary.
In the following, we present the identification framework and describe the various steps of the
MCRE.
The description of the numerical implementation of the presented formulation and the adopted
resolving algorithm will be discussed. Identification results will be presented and the robustness
of the method will be illustrated on a numerical case.

2 The modified constitutive relation error

2.1 Identification framework

Let us consider a structure subjected to a mechanical load, defined in a domainΩ and governed
by the equations of continuum mechanics. Here, we are looking for its elastic properties noted
Θ. In the following formulation, We make the hypothesis that boundary conditions are unknown,
and one disposes only of displacement measurements noted ˜u, available on a given partΩm of the
entire domain, as shown in figure 1. Thus, the mechanical equations are:







Equilibrium: div σ = 0 in Ω (1a)

Kinematic compatibility: ε =
1
2
(▽u+▽

′

u) in Ω (1b)

Constitutive equation: σ = C(Θ) ε in Ω (1c)

Measurements: u= ũ in Ωm (1d)

with C the stiffness tensor,u the displacement vector,σ the stress tensor andε the strain tensor.

Ω

Ωm

∂2Ω

∂1Ω

BC1

BC2

Figure 1. Refrence problem related to the identification problem

Ωm is a non-zero measurement subdomain, defined asΩm⊂ Ω. Measurements are stored in vector
ũ, defined as: ˜u∈ R2×n in a 2D problem, withn the number of measurement points.
The formulation of the identification problem, based on the so-called modified constitutive relation
error (MCRE) is a variational inverse approach split in two steps. The first step consists in building
admissible stress and strain fields for a fixed set of mechanical parametersΘ, by using the whole
experimental and theoretical information in our disposal.This step defines the reference problem.
The second one consists in finding the best model’s parameters Θ by minimizing a cost function
derived from the solution fields of the previous step.

2.2 The basic problem

One of the MCRE’s principles relies on the partitioning of the previous equations into reliable and
unreliable equations. Then, during the identification process, the method consists in the exact veri-
fication of the equations which are considered as reliable, and the relaxation of uncertain relations,
which are verified at best by a weighted minimization of the MCRE functional. The two relation’s
sets are defined as:
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1. Reliable equations: mechanical equilibrium (1a) and kinematic compatibility(1b).

2. Uncertain equations:

• the constitutive equation (1c), containing the sought behavior properties .

• measurements (1d) , because they are spotted by perturbations. This point represents
the difference between MCRE and CRE methods and allots the adjectiveModified to
the presented procedure.

This separation leads to the following formulation of the identification problem, which defines the
reference problem for a fixed parametersΘ:

Find the couple(u,v) that minimizes:

J (u,v) =
1
2

∫
Ω

σ(v−u) : ε(v−u)dΩ
︸ ︷︷ ︸

J1

+α
1
2

∫
Ωm

(u− ũ)2dΩm

︸ ︷︷ ︸

J2

(2)

under reliable equations constraints (1a) and (1b). Whereu andv are the sought admissible fields.
The solution of the basic problem is denoted as:

{
(u(Θ),v(Θ)) = argmin

u,v
J (u,v)

under constraints (1a) and (1b)

Remark. v is a statically admissible field. Actually, the presented formulation is written in a
displacement way and one can show that:∃ v such asσ = C ε(v), whereC is the Hooke’s tensor.
The functionalJ is composed of two parts. A first componentJ1 relative to the specific constitutive
equation, and a second oneJ2 expressing the gap between simulated and measured fields. Its
minimization leads to the resolution of a linear system, andthen, the achievement of the admissible
fields building (see section 3.1).
α is an hyperparameter used to make the functional terms have the same unit, and plays also the
role of a weighting factor allowing to balance their magnitudes.

2.3 The identification problem

The solving of the basic problem (2)yields the admissible fields for any set of parameters and one
can now proceed seeking the parametersΘ, thanks to the minimization of a cost functionG which
has the same form of the functionalJ but is function of the optimal fieldsu andv. Identification
problem is then written as:

Θ = argmin
Θ′
G (Θ

′

)

with G (Θ
′

) = J (u(Θ
′

),v(Θ
′

))

3 Numerical implementation

3.1 Discretization of the basic problem

To implement the presented method numerically, one should discretize of the continuous problem
(2). The choice here is to use the finite element method. Thus,after the meshing of the domain
Ω, solution fields are represented by discrete vectors containing displacement on the degrees of
freedom, denotedU andV. The column vector̃U stores measured displacements available on the
measurement grid andK denotes the discrete rigidity matrix.
In order to solve the numerical problem, the discrete formulation will be based on the partitioning
of mesh nodes into two groups: internal nodes, denoted by theindex "i", and border nodes denoted
by the index "b". When dealing with both internal and border nodes, the index "." is used. Thus,
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the problem (2) takes the following discrete form:
Find (U,V) that minimize:







J (U,V) =
1
2
(U −V)TK(U −V)

︸ ︷︷ ︸

J1

+α
1
2
(ΠU −Ũ)T(ΠU −Ũ)

︸ ︷︷ ︸

J2

(4a)

under the constraint Ki.V = 0 (4b)

One can remark that the equilibrium constraint of the reference problem stands only for the internal
nodes. Thus, all the columns of the rigidity matrix are concerned. In order to evaluate the distance-
to-measurements term, a discrete operatorΠ is introduced and plays two roles: extracting an
adequate size of the kinematic admissible fieldU defined on the whole domain, to fit the subdomain
Ωm if smaller thanΩ, and projecting that extracted part on the measurement grid.
To simplify mathematical writing, we make hypothesis thatΠ is only applicable on the internal
nodes of the mesh. Finally, functionalJ is minimized under the constraint (4b). Thus, a Lagrange
multiplier Λ is introduced:

L (U,V,Λi) = J (U,V)−ΛT
i (Ki.V)

When studying the stationarity of the Lagrangian, we obtainthree equations
(

∂L
∂U ,

∂L
∂V ,

∂L
∂Λ

)

=

(0,0,0). After doing the partitioning on both internal and border nodes, we obtain the follow-
ing simultaneous equations:







(Kii +αΠTΠ)Ui +KibUb = αΠTŨ (5a)
KbiUi +KbbUb−KbiVi −KbbVb = 0 (5b)
KiiUi +KibUb = KT

ii Λi (5c)
Kbi(Ui −Vi)+Kbb(Ub−Vb) = KbiΛi (5d)
KiiVi +KibVb = 0 (5e)

3.2 Solving algorithm

3.2.1 Discrete reference problem

From equations (5c) and (5d), one can easily show that(Ub−Vb) corresponds to the degrees of
freedom of a rigid body motion on the domain border. Besides,one can show that functionalJ is
insensitive to that rigid body motion, that is why it is chosen equal to zero (Ub =Vb).
Thereby, equations (5b) and (5e) lead to a linear system as a function ofU :

[
Kii +αΠTΠ Kib

Kbi KbiK
−1
ii Kib

][

Ui
Ub

]

=

[

αΠTŨ
0

]

By substitutingUi with Ub, Ub is deduced as a solution of the following linear system:

Kbi

[

(Kii +αΠTΠ)
−1

−K−1
ii

]

Kib
︸ ︷︷ ︸

M

Ub = Kbi(Kii +αΠTΠ)
−1αΠTŨ

︸ ︷︷ ︸

F

(6)

Let us note thatM becomes a rank-deficient matrix whenΩm is smaller thanΩ. In that case, we
choose aQR decomposition, whereQ is an orthogonal matrix andR an upper triangular matrix,
such as:

M = QR= [Q1 Q2]

[
R1 R2
0 0

]
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The solution of problem (6) has a particular solution and a second part relative to the kernel of M.
Since the functional’s magnitude is insensitive to the kernel member choice, it is chosen equal to
zero. After theQRdecomposition, the problem solution is:

Ub = R−1
1 QT

1 F (7)

The other quantities(Ui,Vi andVb) are simply deduced fromUb. Next step is the identification of

the material properties by the minimization of the cost function G
(

U(Θ′

),V(Θ′

)
)

.

3.2.2 Calculation of the gradient

A great specificity of the present procedure is the use of the same functional to describe both
reference and identification problems. The interest of thatparticularity is an immediate access to
the expression of the cost function gradient, very helpful for the minimization step. Generally,
when the gradient expression is not directly available, it can be computed by using adjoint state
method. In the present formulation, the reference problem and the adjoint state are coupled and
solved together. Here, the cost function is equal to the Lagrangian At the solution fieldsU,V,Λi,
the cost function is equal to the Lagrangian. To calculate the gradient one just needs to work out
partial derivatives of the Lagrangian with respect to material properties, that is:

∂G
∂Θ′

k

=
∂L
∂Θ′

k

=
1
2
(U −V)T

∂K

∂Θ′

k

(U −V)−ΛT
i

∂Ki.

∂Θ′

k

V (8)

whereΘ′

k denotes thekth sought material property.

4 Application to numerical examples

In this section, we illustrate the method through two numerical examples where data are numeri-
cally built. Random perturbations are mixed with the constructed displacement field, in order to
simulate experimental errors. To perform the identification by the MCRE, one only has to solve the
basic problem to build the admissible displacement fields, and then use an adequate minimization
algorithm, depending on the number of sought properties.

4.1 Test case 1

Figure 2. First example being studied

The first test case being studied (Figure 2) is an elastic square plate, clamped on one side and
subjected to uniformly distributed load on the opposite side. The plate is then meshed by Q4-
elements and considered elastic and homogeneous. Measurements are artificially built with given
reference values of Lame coefficientsλ0 andµ0. Rather thanλ, we will identify µ since it is more
sensitive to the displacement field here.
In order to evaluate the robustness of the method, the dependence of the cost function on the
perturbation magnitude will be studied. Figure 3(a) shows the shape of the cost function when
perturbed with a white Gaussian noise whose magnitude is equal to 5% of the mean value of the
displacements. Its minimum is still well found.
Figure 3(b) presents the identification results on 700 samples of perturbation, in terms of mean
value and standard deviation for theµ modulus as a function of the noise level. Two MCRE
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(a) Cost function for perturbed measurements
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Figure 3. Cost function and identification results

formulations are compared, the presented one (in black) without any knowledge on the boundary
conditions, and a second formulation (in gray) taking into account the knowledge of the free-edges
(σ.n= 0) as a reliable information. Such an information improves the identification results.

4.2 Test case 2

The second test case is an elastic isotropic plate subjectedto a 3 points bending. The plate is
meshed with T3-elements, and we look for homogeneous Lame coefficient µ. The displacement
measurements are created from a reference calculation withreference Lame coefficients(λ0,µ0)
and are illustrated on Figure 4.

Figure 4. Simulation of a 3 bending test (geometry and displacement fields)

Besides, we propose to compare the MCRE method to the FEMU method [4] when dealing with
approximately the same type of data, where perturbations are added to displacement information.
The expression of the cost function of FEMU method is:J = 1

2(ΠU − Ũ)T(ΠU − Ũ). Since it
always needs the knowledge of the boundary conditions, the size of measured zone is extended to
the whole domain (Ωm = Ω). For each data, the basic problem of each method is detailed:

1. Data1: perturbed displacements onΩm and exact boundary conditions (unperturbed).
Type of the basic problem :

• FEMU: exact mixed boundary conditions.

• MCRE: exact Neumann boundary conditions on∂ f Ω.

2. Data2: perturbed displacements onΩm.
Type of the basic problem :

• FEMU: perturbed Dirichlet boundary conditions treated as reliable.

• MCRE: no boundary conditions.

3. Data3: perturbed displacements onΩm and exact free-edges information.
Type of the basic problem :

• FEMU: free-edges information and perturbed Dirichlet boundary conditions elsewhere,
treated as reliable.

• MCRE: free-edges information treated as reliable.
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It is to be noted that, contrarily to the FEMU method, the MCREmethod handles available data at
its fair value. Indeed, uncertain boundary conditions are treated as reliable by the FEMU method
whereas MCRE method treats as reliable only the exact information such that free-edges informa-
tion, or exact boundary conditions (data 1).
In Figure5, FEMU identification results are represented by black curves when MCRE results are
represented by gray ones.
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Figure 5. Comparison between FEMU and MCRE methods for different types of data

Figure 5(a) shows identification results when dealing with the true boundary conditions, which
constitute an unreal case. In fact, no exact boundary conditions can be obtained during a mechan-
ical test. One can observe how small the magnitude of the standard deviation is. Here, the FEMU
method gives better results in such interval for the standard deviation.
Figures 5(b) and 5(c) present identification results of FEMUmethod for the last two data, where
all displacement data are corrupted. The corresponding MCRE results are not ready yet but will
be presented during the oral presentation. The first studiedexample confirmed the robustness of
the method. It shows that the MCRE method is effective in the total or partial absence of BC
information in the presence of corrupted measurements.

5 Conclusion

In this paper, we considered the problem of the identification of material parameters in the frame-
work of static. An identification strategy based on the use ofthe modified constitutive relation
error was proposed. It has the particularity of taking into account the whole theoretical and exper-
imental data to build admissible fields, then, the identification step starts by the minimization of a
cost function with regards to those optimal fields. The presented approach is formulated in a dis-
placement way and has the advantage of being robust with respect to measurement uncertainties.
When inverting the linear system in the first step, aQRdecomposition was proposed to avoid ker-
nel problems occurring when the size of measurement zone is smaller than the size of the whole
domain zone. The method was applied to heterogeneous materials, in the case of orthotropic
elasticity. Identification of orthotropic parameters is being developed thanks to a coupling with a
minimization procedure using the available gradient information.
Besides, an optimal control problem was studied, taking into account the only distance-to-measurements
term of the MCRE functional. Its results will be discussed during the oral presentation.
The work prospect is to develop the MCRE strategy by taking into account loading information
such as the resulting load, in the set of unreliable equations, by adding a distance-to-load term into
the MCRE functional. The next step will focus on the application of this method to real full-field
measurements.
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