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Abstract  
Filled polymer is a material of great practical importance due to its unique properties. Non 
reinforced polymer matrices generally do not exhibit properties suitable for practical 
purposes. On the contrary, polymers filled with carbon black have a shear modulus much (up 
to 100 times) higher than that of pure polymer matrix. The presence of carbon black in 
polymer matrix introduces certain non-linear effects like Payne and Mullins effect. The aim of 
this work is to develop a micro-mechanical finite element model of filler reinforced polymers 
which serve to better understand and quantitatively analyze their complex behavior. 
 
 
1 Introduction 
Stronger, stiffer polymeric materials are attractive to numerous industries due to their light 
weight, easy manufacturing, low cost and recyclability. Reinforcement of polymer matrices 
with inorganic nanoparticles produces composite materials that exhibit enhanced mechanical 
and thermo-mechanical properties without significant increase in the weight of the material. 
Excellent stiffness and strength are achieved while utilizing far less high-density inorganic 
material than is utilized in conventional composites. Independent of whether the nano filler is 
spherical (carbon black), cylindrical (carbon nanotubes) or a platelet (clay) the efficiency of 
the inorganic nano-reinforcement depends on three parameters: filler mechanical properties, 
filler aspect ratio and adhesion between the matrix and filler [1].  
 
The main goal of the present work is to develop a micro-mechanically motivated finite 
element model of filler-reinforced polymers which serves to better understand and 
quantitatively analyze their complex physical behavior. Some effects like strain amplification, 
inter-penetration of clusters and pore-space filling can only be modeled in a reliable way if the 
three-dimensional sophisticated geometry of the clusters is represented as realistically as 
possible. For this reason, the finite element method has been used as it permits to construct 
complex geometries and include sophisticated mathematical descriptions of the thermo-
mechanical polymer and filler behavior. 
 
2 System of filled elastomer 
The system of filled elastomer can be described as a dispersion of solid particles in polymeric 
network. The system can be divided into four main domains as shown in Figure 1, namely 
aggregate of filler particles, glassy rubber, loosely bound rubber and pure rubber matrix.  
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Figure 1. Pictorial representation of carbon black filled rubber compound [2]. 
 
2.1 Filler particle 
Most of the rubber fillers used today offer some functional benefit that contributes to the 
process ability or applicability of the rubber product. Of the many fillers used to modify the 
properties of rubber products, carbon black, calcium carbonate, kaolin clay and precipitated 
silica are the most common. In this work we keep our focus on carbon black filler particles.  
 
Carbon black is considered to be linear elastic in nature. Carbon black (c.b) plays an 
important role in the improvement of the mechanical, thermal and electrical properties of 
rubber materials. Carbon black is a form of amorphous carbon that has a high surface area-to-
volume ratio. The reinforcing potential is mainly attributed to two effects: (i) the formation of 
a physically bonded flexible filler network and (ii) strong polymer filler couplings.  Filler 
particles exist as an aggregate in the rubber matrix. So as the size of the particle decreases the 
overall surface area of the aggregate increases providing more area for a strong polymer filler 
coupling [4].  
 
So far, the formation and structure of the c.b network and the mechanical response is not fully 
understood.  For a deeper understanding of the mechanical and thermal properties of c.b filled 
rubbers, it is necessary to consider the morphology of the c.b particles (primary aggregates) 
more closely.   
 
2.2 Primary Aggregate 
Carbon black is produced by incomplete combustion of heavy petroleum products. C.b 
generally exists as an aggregate which is considered to be a fractal object of sintered c.b 
particles. Each of such aggregates is referred to as primary aggregate. Figure 2(a) is a 
transmission electron microscope (TEM) image of a primary aggregate. The collection of 
many such primary aggregates is known as agglomerate. Figure 2(b) shows the relevant 
dimensions of carbon black filler particles and its aggregates.  
 
The morphology of c.b is closely related to the conditions of surface and primary aggregate 
growth during c.b processing. To be able to represent the aggregates and agglomerates more 
realistically using finite elements, it is important to generate such aggregates computationally 
considering the fractal parameters. There are at least three well-studied particle–particle 
aggregation models (ballistic, diffusion-limited, and reaction-limited) [7]. 
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Figure 2. (a)TEM image of a primary aggregate; (b) relevant dimensions of filler and its aggregates [2] 
 

In this work a more recent approach proposed by Morozov et al. [4] for particle-particle 
aggregation has been used due to its simplicity. The aggregation algorithm in which the 
particles are randomly placed in a layer-by-layer fashion around the first particle is based on 
the following equations; 
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(2) 

𝑅𝑀 = (2𝑀 + 1)𝑟𝑝 (3) 
 
where n is the number of particles located at distance R from the aggregate center, 𝑟𝑝 is the 
particle radius and D is the mass fractal dimension. The number of particles with centers in 
the M-th layer is given by ∆𝑛𝑀 Figure 3(a). It is assumed that the particles increase in size 
during furnace annealing. To take into account this process, one half of the originally defined 
value of the particle radius is considered. When aggregate of desired size is constructed, the 
radius of aggregate particles is increased to its real value. As a result, the spheres representing 
the aggregate particles overlap each other Figure 3(c). The constant C in (1) is chosen in a 
way that the specific areas of particles, correspond to the specific areas obtained 
experimentally [4]. 
 
2.3 Polymer matrix 
The micro structure of polymer consists of long, randomly oriented molecular chains which 
are linked together. In this way an arbitrary three-dimensional network is formed. In addition 
there exist intermolecular interactions between the particular atoms which have an important 
influence on the dilatational response of rubber-like materials.  
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Eg. elastomers can be described by a network model of Böl and Reese [6], which is based on 
the concept of Langevin statistics. The Böl and Reese [6] approach is based on the idea of 
representing the polymer network by means of an assembly of non-linear truss elements. Each 
truss element models the force–stretch behavior of a certain group of chains. The truss 
elements are configured in such a way that six of them form a cell of tetrahedral shape. These 
tetrahedral elements serve to model the hydrostatic pressure built up in the network. Using a 
random assembling procedure one can model arbitrary geometries.  

           (a)     (b)     (c) 
 

Figure 3. Algorithm for generation of filler aggregates [5] 
 
One fundamental material property of rubber-like material is its high elasticity which permits 
stretching of several hundred percent. The reason for this behavior is the particular micro 
structure of rubber. It is characterized by a huge number of chain-like macromolecules which 
form a three-dimensional network. The material exhibits so-called statistical behavior, i.e. the 
network configuration actually taken on by the material is the most probable one under the 
given circumstances. Describing the entropy of a single chain with the help of Langevin 
function and assuming the internal energy of the chain to be negligible, the Helmholtz free 
energy function has been described as  
 

𝑊𝑐ℎ𝑎𝑖𝑛 = 𝑘𝑛𝜃 �𝛽𝛾
𝜆𝑐ℎ𝑎𝑖𝑛
√𝑛

+ 𝑙𝑛
𝛽

𝑠𝑖𝑛ℎ𝛽�
 

(4) 

 
where k is Boltzmann’s constant, θ the absolute temperature, and λ is the stretch of the chain. 
β can be expressed as series expansion of inverse Langevin function[8] which depends on the 
number of approximations n and γ which is a function of rotation angle and bond angle of an 
idealized chain. 
           
The statistical properties of a single chain depend on geometrical parameters. However, 
intermolecular interactions, in particular the effect of the well-known van der Waals forces, 
cannot be completely neglected because they are mainly responsible for the fact that rubber is 
almost incompressible. To give the structure additional volumetric stiffness, the space 
between the chains is filled with artificial material using a tetrahedral element. This is 
modeled by means of the Helmholtz free energy function per reference volume: 
 
𝑊𝑡𝑒𝑡𝑟 = 𝐾/4(𝐽2 − 1 − 2𝑙𝑛𝐽) (5) 
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3 Finite element modeling 
3.1 Filler element  
Filler particles are modeled using the so called super element. A super element is a group of 
finite elements that, upon assembly, may be regarded as an individual element for 
computational purposes. The motivation to use the concept of super elements is to take 
advantage of repetition and reduce the computational effort. In the given system filler particle 
is a repeating unit i.e. tens and hundreds of filler particles combine to form an aggregate and 
hundreds of aggregates combine to form agglomerate. 
 
Degrees of freedom (d.o.f) of a super element are classified into two groups: Internal d.o.f: 
Those that are not connected to the freedoms of another element. Nodes whose d.o.f are 
internal are called internal nodes. Boundary d.o.f: these are connected to at least one other 
external element. They usually reside at boundary nodes placed on the periphery of the super 
element. See Figure 4. The objective is to get rid of all internal d.o.f. This elimination process 
is called static condensation, or simply condensation. This help to reduce the d.o.f of the 
entire system by reducing the computational time [9]. 
 
To carry out the condensation process, the assembled stiffness equations of the super element  
are partitioned as follows: 

 
 

Figure 4. 2D representation of a filler element; red dots: boundary nodes, black dots: internal nodes 
 

�𝑲𝒃𝒃 𝑲𝒃𝒊
𝑲𝒊𝒃 𝑲𝒊𝒊

� �
𝒖𝒃
𝒖𝒊 � = �𝒇𝒃𝒇𝒊

� (6) 

 
where sub vectors 𝒖𝒃 and 𝒖𝒊 collect boundary and interior d.o.f, respectively. Take the second 
matrix equation: 
 
𝑲𝒊𝒃𝒖𝒃 + 𝑲𝒊𝒊𝒖𝒊 = 𝒇𝒊 (7) 
 
If 𝑲𝒊𝒊 is nonsingular we can solve for the interior unknowns: 
 
𝒖𝒊 = 𝑲𝒊𝒊

−𝟏(𝒇𝒊 − 𝑲𝒊𝒃𝒖𝒃) (8) 
 
Inserting into the first matrix equation of (6) yields the condensed stiffness equation 
 
𝑲�𝑏𝑏𝒖𝒃 = 𝒇�𝒃 (9) 
 
In this equation, 
 
𝑲�𝑏𝑏 = 𝑲𝒃𝒃 − 𝑲𝒃𝒊𝑲𝒊𝒊

−𝟏𝑲𝒊𝒃 𝒇�𝒃 = 𝒇𝒃 − 𝑲𝒃𝒊𝑲𝒊𝒊
−𝟏𝒇𝒊 (10) 
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are called the condensed stiffness matrix and force vector of the super element, respectively. 
 
From this point onward, the condensed super element may be viewed as an individual element 
whose element stiffness matrix and nodal force vector are 𝑲�𝑏𝑏 and 𝒇�𝒃, respectively. This 
super element will now be referred to as filler element which is repeated several times in 
order to represent aggregates. Using this technique filler particle of any shape can be modeled 
easily. Please note, that as the filler particle is considered to be linear elastic, inversion of the 
stiffness matrix 𝑲𝒊𝒊 has to be carried out only once for the filler element in each time step.  
 
3.2 Polymer element 
According to the remarks in section 2.3 a finite element unit cell that consists of one 
tetrahedral element and six truss elements lying on each edge of the tetrahedron has been 
established, Figure 5. The Helmholtz free energy of one unit cell then includes one 
contribution coming from the tetrahedral element (𝑊𝑡𝑒𝑡𝑟) and another one coming from the 
truss elements (𝑊𝑡𝑟𝑢𝑠𝑠𝑗, j = 1, . . ., 6) 
 

𝑊 = 𝑊𝑡𝑒𝑡𝑟 + �𝑊𝑡𝑟𝑢𝑠𝑠𝑗

6

𝑗=1

 (11) 

 
In reality, the number of chains per volume is huge. As it is not possible to describe each 
chain by a single truss element, one truss element is used to represent several polymer chains, 
i.e. a bundle of chains (see the enlargement of Figure 5. The Helmholtz free energy function 
of the truss element j (j = 1, 6) then has the form  
 

𝑊𝑡𝑟𝑢𝑠𝑠𝑗 =
1

𝐴0𝑗𝐿0𝑗
𝑓𝑐ℎ𝑎𝑖𝑛𝑊𝑐ℎ𝑎𝑖𝑛𝑗 

 

with (13) 

𝑊𝑐ℎ𝑎𝑖𝑛𝑗 = 𝑘𝑛𝑗𝜃 �𝛽𝑗𝛾𝑗
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� 

 

 
where 𝐴0𝑗 is the cross-section and 𝐿0𝑗  the length of the truss element in its underformed state. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Tetrahedral unit cell. Blue: tetrahedral element, red: truss elements and yellow: polymer chain 
bundles [6]. 

 
Exploiting (11) one can further derive the constitutive material matrix for implementation in a 
finite element code [6]. The advantage of this approach is that it is conveniently applied to a 
finite element mesh for complicated realistic geometries using tetrahedral elements 
superimposed with truss elements. 
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3.3 Complete System 
Figure 6(a) shows the modeling of primary aggregate. Filler particles are surrounded by a 
layer of elements representing the sinter bridges bounding different filler particles into a 
primary aggregate. This is then surrounded by a layer of elements representing bounded 
polymer. The bounded polymer layer is described as the polymer in its glassy state which is 
several times stiffer than the polymer in its rubbery state. This system is then embedded into 
the polymer matrix as shown in Figure 6(b). Polymer elements, introduced in section 3.2 have 
been used to model the glassy layer and the polymer matrix. 

 
  
 
 
 
 
 
  
 
 
 

 
   (a)      (b) 

 
Figure 6. (a) Model for the primary aggregate, (b) model for the system of filled rubber 

 
4 Numerical Examples 
Simple uniaxial tension and compression tests are carried out to understand the behavior of a 
filled elastomer system. Simulations have been carried out for filled elastomer system with 
different volume fractions of filler aggregates (volume fraction φ is the ratio of filler 
aggregate volume to the volume of the entire system). For the case of uniaxial tension we 
observe that the reaction forces in the system increase with increase in volume fraction 
(Figure 7) and for the compression test we observe that the displacement of point P reduces as 
the volume fraction increases (Figure 8 and Table 1).  
 
 
 
 
 
  
 
 
 
 
 
 

Figure 7.  Reaction forces vs. strain for uniaxial tension test; (inset-boundary conditions) 
 
We can conclude that the stiffness of the filled elastomer system increases with volume 
fraction of the filler aggregate.  
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           (a)       (b) 
 

Figure 8.  (a) Boundary conditions for compression tests, (b) displacement of point P 
 

 
 
 
 
 

 
Table 1. Displacement for different volume fraction 

 
5 Conclusions and Outlook 
The system of filled elastomer was successfully modeled at a microscopic level using the 
finite element method for which: (1) a filler element was developed to represent filler 
particles and (2) different phases of polymer was modeled using the polymer element 
developed by Böl and Reese [6]. There is a need to further include the temperature 
dependence of the polymer to simulate the effect of glass transition temperature in the vicinity 
of filler particles. Also, the model will be enhanced to simulate the non-linear Mullins effects 
due to breakage of bonds between filler particles and polymer chain at the interface under 
dynamic loading conditions. 
 
References 
[1] S.M.Liff, Thermomechanics of Nano-Filled Elastomers, Dissertation, MIT, USA, (2008). 
[2] J.L.Leblanc, Rubber filler interactions and rheological properties in filled compounds, 

Prog. Polym. Sci. 27, 627-687,(2002). 
[3] S.Merabia et al., A Microscopic Model for the Reinforcement and the Nonlinear Behavior 

of Filled Elastomers and Thermoplastic Elastomers (Payne and Mullins Effects), 
Macromolecules 41, 8252-8266, (2008). 

[4] M.Klüppel et al., Chapter 31 in “Physical Properties of Polymers Handbook”,  Springer 
New York, 359-550, (2007). 

[5] I.Morozov et.al, A new structural model of carbon black framework in rubbers, 
Computational material Science 47, 817-825,(2010). 

[6] M.Böl and S.Reese, Finite element modelling of rubber-like polymers based on chain 
statistics, International Journal of Solids and Structures 43, 2–26, (2006). 

[7]  P.Meaking, A Historical Introduction to Computer Models for Fractal Aggregates,                                     
Journal of Sol-Gel Science and Technology 15, 97-117, (1999). 

[8]  W.Kuhn and F.Grün, Beziehung zwischen elastischen Konstanten und Dehnungs   
doppelberechnung hochelastischer Stoffe, Kolloid-Zeitschrift 101, 248-271, (1942). 

[9] Chapter 10 in “Introduction to Finite Element Methods”, Department of Aerospace 
Engineering Sciences, University of Colorado at Boulder, (2011). 


