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Abstract  

This paper presents an analytical solution for plane thermoelasticity problems of a 

nonuniformly coated circular inclusion under a remote uniform heat flow. Based on the 

technique of conformal mapping and the method of analytical continuation in conjunction 

with the alternating technique, the general expressions of the temperature, displacements and 

stresses for three dissimilar media are derived explicitly in a series form. For a limiting case 

that the thickness of the interphase layer is uniform, the derived analytical solutions are 

reduced to those of the corresponding circularly cylindrical layered media problem. 

Numerical results of interfacial stresses along the interface are carried out and displayed in 

graphic form. 

 

 

1 Introduction  

Boundary value problems in an elastic medium with inclusions have received 

considerable attention from many researchers since those problems have applications to many 

different engineering structures. Of various inclusions the elliptic shape has evoked the most 

interest among researchers. The stress field around the elliptical cavity under uniform loading 

for an isotropic and homogeneous material was first provided by Muskhelishvili [1]. The 

interaction of a point heat source with a circular inclusion was investigated by Chao and Shen 

[2]. The general solutions for an anisotropic solid with an elliptical inclusion under a remote 

uniform heat flow was given by Chao and Shen [3] using the method of analytical 

continuation and Lekhnitskii [4] complex potential approach.  

So far, most work on inclusion problems was restricted to the two-phase model. Ru [5] 

investigated the effect of interphase layers on thermal stresses within an elliptical inclusion by 

using the Laurent series expansion. By using the same method, an exact solution for thermal 

stresses in a three-phase composite cylinder subject to uniform heat flow was provided by 

Chao et al. [6]. By using the Peach-Koehler formula, the image force due to edge dislocations 

interacting with a nonuniformly coated circular inclusion was investigated by Chen [7].   

 

 

2 Material and methods 

2.1 Basic equations 

Consider a circular inclusion surrounded by an interphase layer of nonuniform thickness, 

which in turn is embedded in an unbounded matrix subjected to a remote uniform heat flow 

(see Fig. 1a). The shear moduli of Sa, Sb and Sc are denoted by Ga, Gb and Gc, respectively and 

the heat conductivities of Sa, Sb and Sc are denoted by ,   and a b ck k k , respectively . Both the 
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inner circular interface L1 formed by Sa and Sb, and the outer circular interface L2 formed by 

Sb and Sc are assumed to be perfect, i.e. both tractions and displacements are continuous 

across the two interfaces. The origin of the Cartesian coordinate system is chosen to be at the 

center of the outer circle L1 of unit radius. The center of the inner circle L2 of radius 

0 2 1( ) / 2R x x   lies on the x-axis. The two centers of the two circles L1 and L2 are set apart 

by the distance =(x1+x2)/2. The components of the displacements, stresses and tractions for 

an isotropic body under plane deformation are expressed in terms of two stress functions ( )z  

and ( )z , and a temperature function ( )z as follows [2]:  

 

 '2 ( ) ( ) ( ) ( ) 2 ( )x yG u iu z z z z G z dz           (1) 

 

 ' '2 ( ) ( )xx yy z z      
 

 (2) 

 

 '' '2 2 ( ) ( )yy xx xyi z z z        
 

 (3) 

 

 '( ) ( ) ( )y xF iF z z z z        (4) 

 

where 3 4    for the plane strain deformation and (3 ) /(1 )    for the plane stress 

deformation,   and   are Poisson’s ratio and the thermal expansion coefficients, respectively. 

Here the prime represents the derivative with respect to z x iy  , and the overbar represents 

the complex conjugate.  

We adopt the following conformal mapping function ( )m   [8] 

 

 ( )
1

a
z m

a







 



 (5) 

 

where  
2 2

1 2 1 2

1 2

1 ( 1)( 1)
1

x x x x
a

x x

   
 



 

 

The mapped  -plane is shown in Fig. 1b. It can be observed that the unbounded matrix Sc is 

mapped onto a unit disk 1   in the  -plane and the point at infinity z=∞ is mapped onto 

1/ a   in the  -plane, the interphase layer Sb formed by two eccentric circles 1L  and 2L  is 

mapped onto the annulus 1 R   ( 2 2

1 2 1 2 2 1(1 ( 1)( 1)) /( ) 1R x x x x x x       ) in the  -plane. 

For convenience of calculation, we write ( ) ( ( ))m     and ( ) ( ( ))m     so that in the 

mapped  plane, the displacements, stresses and resultant forces take the form 

 

 ' '

'

( )
2 ( ) ( ) ( ) ( ) 2 ( ) ( )

( )
x y

m
G u iu G m d

m


          


       (6) 

 

 
' '

' '

( ) ( )
2

( ) ( )
xx yy

m m

   
 

 

  
   

  

 (7) 

 

 
' '

' ' '

( ) ( ) ( )
2 2

( ) ( ) ( )
yy xx xy

m d
i

m d m m

    
  

   

  
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  

 (8) 
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 '

'

( )
( ) ( ) ( )

( )
y x

m
F iF

m


     


    

 (9) 

 

2.2 Temperature fields 

For a two-dimensional heat conduction problem, the temperature function satisfies a 

harmonic equation. In the present study, the resultant heat flow h and the temperature T  are 

expressed in terms of a single complex potential ( )   as [2] 

 

    ( ) Im[ ( )]x yh q dy q dx k                          (10) 

 

     Re[ ( )]T                                        (11) 

 

where Re and Im denote the real part and imaginary part of the bracketed expression, 

respectively. The quantities qx, qy in Eq. (2) are the components of heat flux in x and y 

direction, respectively, and k  stands for the heat conductivity. 

The complex function for a remote uniform heat flow with the temperature gradient 

/q k    directed at an angle   with respect to the positive x- axis in a homogeneous infinite 

plane can be trivially given as 

 

 
0
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( )

1

i
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e z
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 (12) 

 

The alternating technique and the analytical continuation method are applied to derive the 

unknown stress functions in terms of 0 ( )   as follows 
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 (13) 

 

Integration of Eq. (13) with z yields 
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2.3 Stress fields 

For a region bounded by a circle, say c  , we introduce an auxiliary stress function 

( )   such that [5] 
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It should be noted that unlike the standard Muskhelishvili complex functions ( )   and ( )  , 

the function ( )   is dependent on the radius of the circular interface.  

By the same method as in the previous steps, we can find all the unknown functions ( )n  , 

( )an  , ( )bn   and ( )cn   (n=1,2,3…) which can be expressed in terms of 
0 ( )   and 

0 ( )   

as 
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For a limiting case of interphase layer with uniform thickness, i.e., 1 20 (or )x x    , the 

above solutions, Eq. (16) and Eq. (17), reduce to an exact solution for the corresponding 

circular inclusion problem [5].  
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3 Results and discussion 

The thermal potential in Eq. (13) is expressed in terms of a homogeneous solution 0 ( )z  

through the non-dimensional bimaterial constants V  and U . The present series solution 

converges to the true solution since those bimaterial constants are always less than one. The 

stress functions as indicated in Eqs. (16), (17) which may be calculated from 0 ( ) z  and 

0 ( )z  through the non-dimensional bimaterial constants   and  . For most combinations of 

materials,   and   are less than 1 and 0.5, respectively, which guarantees rapid convergence. 

Consequently, the convergence rate becomes more rapid as the differences of the elastic 

constants of the neighboring materials get smaller. Even though materials a and/or c are rigid 

or non-existent, the solution remains valid. For a limiting case of an uniformly coated 

inclusion problem, 1 20 (or )x x    , the above solutions, Eq. (16) and Eq. (17), can be 

reduced to an exact solution .  The angular variations of interfacial stresses for a three-phase 

cylinder are discussed in detail and shown in graphic form. Note that all the calculated results 

shown in fig. 2 is determined by summing up to 3n   of Eq. (16) and Eq. (17) respectively, 

since they are checked to achieve a good accuracy with an error less than 0.59% for the 

current problem. Note that all the numerical results are presented for the condition that a 

uniform heat flow is approached from the negative x -axis. Fig. 2a show the variations of the 

normal interfacial stresses between material b and material c for various shear moduli ratio of 

a three-phase cylinder. It is clear that both the normal stress and shear stress increase with the 

difference of the shear moduli of the neighboring materials. It can be observed that both the 

interfacial normal and shear stresses are strongly dependent on the thermal expansion 

coefficient of the neighboring materials in figs. 2b based on the above findings, it can be 

concluded that the interfacial stresses of the current system can be reduced significantly if the 

differences of the elastic constants of the neighboring materials get smaller. Furthermore, it is 

evident that the maximum tensile (or compressive) stress occurs around the location having a 

lower (or higher) temperature. 

 

 

4 Conclusion 

A general analytical solution is given for the temperature and thermal stresses due to an 

uniform heat flow disturbed by a nonuniformly coated circular inclusion. Based on the 

method of analytical continuation and the alternating technique, a rapidly convergent series 

solution for both the temperature and thermal stresses, which is expressed in terms of the 

complex potential of the corresponding homogeneous problem, is obtained in an elegant form. 

Consequently, the present solution procedures can be further extended to the corresponding 

problem consisting of any number of layered medium. As a numerical illustration, the 

interfacial stresses are presented for various material combinations and for different 

eccentricities. We conclude that the interfacial stresses of the current system can be reduced 

significantly if the differences of the elastic constants of the neighboring materials get smaller. 
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Figure 1. (a) A nonuniformly coated circular inclusion embedded in an infinite plate subjected to a remote 

uniform heat flow; (b) the problem in the  -plane 

 

 

Figure 2. Angular variations of the interfacial normal stress with different ratios of (a) shear moduli (b) thermal 

expansion coefficients between material b and c (
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