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Abstract  
This paper deals with a finite element approach based on the Multiparticle Model of 
Mutilayered Materials (M4) designed for delamination study and developed here for the free 
vibration analysis of multi-layered composite plates and impacted ones. It belongs to the 
layerwise modeling family. The laminated plate is considered as a superposition of Reissner 
plate coupled by interfacial stresses. An eight-node per layer element is extended here to the 
dynamic framework. The results obtained are validated by comparisons with existing 
analytical and numerical modeling in case of symmetric (0/90/90/0) laminates, antisymmetric 
(0/90)n ones and impacted (02/452/902/-452)S ones. Despite the relatively simple 2D 
description of the plates, the good results highlight the efficiency of such an approach (even 
for thick laminates). 

 
1 Introduction 
Aided by the research and demonstration projects funded by industries and governments 
around the world, laminated composites are finding wider acceptance in industries as 
aerospace, automobile, civil, marine. These materials have gained the advantage by cost 
reduction, light weight, desired strength and stiffness parameters achievement. Different 
studies have been conducted to determine the dynamic properties of composite laminates. 
Basic theories of plates and shells can be classically classed in five categories: classical thin 
plate theory (CPT), first-order shear deformation theory (FOST), higher-order shear 
deformation theory (HOST), layer-wise model and theory of three-dimensional elasticity. The 
classical lamination theory assumes that straight lines originally normal to the plate median 
surface are constrained to remain straight and normal during the process of deformation. This 
Kirchhoff’s assumption is equivalent to neglecting transverse shear deformation in the plate. 
This simply theory can provide reasonably accurate prediction only for relatively thin plate. 
For thicker plates, Reissner and Mindlin [1] developed the first-order shear deformation 
theory (FOST) including transverse shear and rotatory inertia effects in the dynamic analysis 
of plates. Many studies have been carried out using FOST for the free vibration analysis of 
composite plates. Noor [2] analyzed the free vibration of cross-ply laminated plates. Reddy 
[3] presented a finite element model based on Yang-Norris-Stavsky theory and validated for 
the free vibration of antisymmetric, angle-ply laminated plates. Khare and al.[4] presented 
finite element method and its results for free vibration of thick isotropic plate, cross-ply 
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laminated and antisymmetric angle-ply laminated composite plates, and sandwich plates. Dai, 
Lim and Chen [5] applied FOST for the shallow conical shell panels. Liew and Lim and al. 
[6] presented a semi-analytical solution for vibration of discontinuous Mindlin rectangular 
plates with abrupt thickness variation and studied rectangular plates with central cut-out. 
Yuan and Dawe [7] developed a B-spline finite strip method (FSM) using FOST for 
predicting the natural frequencies of rectangular sandwich panels. However, the FOST 
ignoring the effects of cross-sectional warping leads to an unrealistic variation of the 
transverse shear stresses through the laminate thickness. So, a family of refined 2D theories 
has been developed, named higher-order shear deformation theory (HOST). The HOST 
incorporate higher-order modes of transverse cross-sectional deformation by involving 
higher-order terms in the Taylor’s expansions of the displacements in the thickness 
coordinate. So, the shear correction coefficients as in the first-order Reissner/Mindlin theory 
are not required. Kant and al. [8] presented the formulation of a higher-order flexure theory. 
In [9], they presented an analytical solution based on HOST. Reddy and al. [10] considered 
angle-ply and cross-ply laminates with two simply supported edges and the other two edges in 
different combinations of simply supported, free and clamped conditions. To simulate thick 
laminate construction and to better estimate the 3D stress state in the thickness, the three-
dimensional theory could also be used. Among these approaches are included 3D exact 
analytical solutions and 3D finite element methods. Exact solutions are proposed but for 
limited cases. Srinivas found an exact solution for vibration of simply-supported 
homogeneous and laminated thick rectangular plates and of simply supported thick 
orthotropic rectangular plates and laminate in [11]. Kant [9] proposed analytical solutions 
based on a higher-order refined theory. Noor [2] used three-dimensional theory of elasticity 
for obtaining highly accurate predictions of response characteristics of composite plates. Noor 
and Burton [12] presented solutions for antisymmetric laminated anisotropic plates. Chen [13] 
developed a semi-analytical method which combines the state space approach with the 
technique of differential quadrature for free vibration of a cross-ply laminated composite 
rectangular plate. Otherwise, another model family, called layerwise approaches can also be 
used to calculate thick laminates. It combines a 2D description of the plate and stress or 
displacement fields per layer. For the static studies, several references can be found [14], but 
very few for dynamic development [15]. Initially designed for the study of delamination of 
composite materials by a relevant estimation of interlaminar stresses, such a model is used in 
this paper [16]. Inspired from the work of Pagano [17], it was named Multiparticle Models of 
Multilayered Materials (M4). This model was being already widely validated [18]. A 
quadrilateral C0 finite element model is based on this modeling [19]. The present paper deals 
with developments of this finite element to include the dynamic behaviour of composite and 
sandwich laminates (free vibration and impact). 

 
2 Theory and formulation of the LS1 (M4-5n) 
Construction’s details of the Multiparticle Model of Multilayered Materials (M4) were given 
in [20] and [19]. The LS1 model can be considered as a superposition of Reissner plates 
coupled by interlaminar shear and normal stresses at the interface and as a Reissner model, 5 
generalized displacements describe the kinematic of elementary layer of the n layers 
composite. This section will describe a global overview of the model in the governing 
equations. 

2.1 Description and notation 
The multilayered plate under consideration is then composed of n orthotropic elastic layers 
perfectly bonded together. 
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• Each layer i, thickness ei, is bordered by the bottom surface hi
- and the top surface hi

+. The 
average surface is noted by ħi. 

• The occupied volume of the plate is Ω = ∂Ω × [h1
-, hn

+] 

• The superscripts i and j, j+1 indicate layer i and the interface between layer j and j+1 (i = 
1..n and j = 1..n−1). 

• The subscripts o, p, q, r indicate the components in the (x, y, z) space; they are assigned the 
values 1,2 and 3. The Greek subscripts α, β, γ, δ indicate the components on the (x, y) plane 
and are assigned the values 1 and 2. The normal direction is noted by indice 3. 

• Tensors, matrices and vectors are defined by the bold face characters. 

2.2 Governing equations 
Details can been found in [20]. 

The constraint state of each layer i is described by the following generalized efforts: the in-
plane stress resultant Ni

αβ, the in-plane moment resultants Mi
αβ, the out-of-plane shear stress 

resultant Qiα and the interlaminar shear and normal stresses at interface τj,j+1
α
 and νj,j+1. 
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In this model, rather than 3D displacements, the 3D stresses are approximated. The 
approximate membrane stresses σαβ are chosen linear in the thickness of each layer. Balance 
equations induce that transverse shear stresses and normal stress are second and third degree 
polynomial, respectively. The complete expression of the 3D stress field can be found in [30]. 
Consequently, it has been shown in [30] that the following in-plane deformations εiαβ, the 
curve χi

αβ and the transverse deformations γ
i
α are the strains associated with the generalized 

efforts respectively Niαβ, M
i
αβ, Q

i
α. For the same reason, Dj,j+1

α and Dj,j+1
3 are associated with 

τ
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α
 and νj,j+1. 
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Where the 5n following generalized displacements Ui
α, φ

i
α, U

i
3 are respectively the in-plane 

displacement, the rotation fields and vertical displacement of layer i. 
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The equilibrium and constitutive equations of model are identified with the help of the 
Hellinger-Reissner variational approach [20]. The 5n Reissner following equations are firstly 
obtained:  
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Considering now an orthotropic layer i, the compliance can be classically described by two 
sub tensors: Siαβγδ in-plane compliance and Si

α3β3 shear compliance. It leads to the following 
constitutive equations: 
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This modeling was firstly designed for the study of the delamination of cross plies and 
bonding [21]. Several analytical developments were made and criteria of delamination were 
proposed in [18], [22]. 
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3 Multiparticle finite element model 
Based on the previous model, a C0 finite element model, involving an eight-node 
isoparametric quadrilateral element with 5n d.o.f at each nodal point and four second-order 
Gaussian points is formulated. A program called MPFEAP (Multiparticle Finite Element 
Analysis Program) has been developed for the implementation of the proposed element [19] 
which permits solution of static laminated plate problem [23]. For instance in [23], the 
problem of a composite plate with free edges under mechanical an thermal loading is detailed. 
The development proposed here uses the mixed algorithm - subspace algorithm proposed by 
Dhatt and Touzot [24] to extend MPFEAP for dynamic problems, in particular to calculate the 
p first vibration modes and to simulate the impact of an object on a multilayer plate step by 
step. The geometry is meshed with square master elements defined in the ξ, η space. The 
element is described by eight nodal points and by the shape function Pk(ξ,η). (See [19]) 

   

4 Numerical results and discussion 
An 8×8 mesh and a 16×16 mesh have been used in the computations for thin and thick simple 
supported plate respectively for the free-vibration analysis, and a 10×15 mesh has been used 
for the impacted plate analysis. These choices have been deduced from a convergence study. 
The details of the convergence study are not presented here. The reduced integration scheme 
(4 points Gauss) is used. 

The following simply supported boundary conditions are applied at each layer i: 
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4.1 Cross ply (0/90/90/0) laminated composite plate  
The effect of side-to-thickness ratio is considered in the case of cross-ply (0/90/90/0) 
composites. The orthotropic material properties for the symmetric angle ply laminates 
considered are E1/E2 = 40, G12 =0.6E2, G13 = G23 = 0.5E2, ν12 = ν13 = ν23 = 0.25. The non-
dimensional fundamental frequencies presented in Table 1 are compared with those of HOSTs 
proposed by Kant [8], with the third order shear theory analytical solutions of Reddy [25] and 
with of the second order shear theory of Whitney-Pagano [26]. Kant developed 2 HOSTs. The 
models concern with third order shear deformation. When the first supposes a third order 
displacement in thickness, the second supposes a constant displacement in thickness. The 
results of M4-5n model to thin and thick plates (a/h ≥ 4) are in excellent agreement with those 
of these HOSTs. 

 
a/h 4 10 20 50 100 

MPFEAP 9.17966 15.05926 17.63287 18.67047 18.83627 
Kant-Model 1 [8] 9.2870 15.1048 17.6470 18.6720 18.8357 
Kant-Model 2 [8] 9.2710 15.0949 17.6434 18.6712 18.8355 

Reddy [25] 9.3235 15.1075 17.6457 18.6713 18.8357 
Whitney-Pagano [26] 9.3949 15.1426 17.66596 18.6742 18.8362 

Table 1. Non-dimensionalized natural frequencies ώ = ωa²(ρ/(E2h²))1/2 of simply supported cross-ply 
(0/90/90/0)laminates  
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4.2 (0/90)n laminated composite plate 
The side-to-thickness of the laminates a/h is equal to 5. The orthotropic material properties in 
all the laminates considered are E1/E2 = open, E2 = E3, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 
ν13 = ν23 = 0.25. The degree of orthotropy of individual layers (E1/E2) and the number of 
layers of antisymmetric cross-ply (0/90)n are varied (n =1 and 3). The fundamental 
frequencies obtained by MPFEAP are also validated by comparing with those of 3-D 
elasticity [2] and finite element results using two higher-order plate formulations given by 
Khare-Kant [4] and Reddy [10] (see Table 2). The solutions of 3D elastic theory are used as 
reference. 

n E1/E2 3 10 20 30 40 
1 3-D theory [2] 0.25031 0.27938 0.30698 0.32705 0.34250 
 MPFEAP (-0.69) (-0.63) (-0.61) (-0.61) (-0.63) 
 Khare – HOST [4] (-0.65) (-0.34) (0.36) (1.11) (1.81) 
 Reddy [10] (-0.65) (0.06) (1.91) (4.02) (6.12) 
 CPT (8.19) (10.84) (15.39) (20.27) (25.21) 
3 3-D theory [2] 0.26440 0.33657 0.39359 0.42783 0.45091 
 MPFEAP (-0.99) (-0.95) (-0.91) (-0.89) (-0.87) 
 Khare – HOST [4] (-0.89) (-0.59) (-0.25) (-0.02) (0.15) 
 Reddy [10] (-0.82) (-0.11) (0.79) (1.49) (2.03) 
 CPT (9.55) (19.48) (32.71) (44.83) (56.04) 

Table 2. Non-dimensionalized natural frequencies ώ = ω(ρh²/E2)
1/2 of simply supported cross-ply square 

laminates (0/90)n 
 

In the case where n = 1 and for a constant total thickness of the laminate, influence of the 
degree of orthotropy in the calculations is very critical because layers are thicker than for n > 
1, and the cross section is more distorted. Results obtained by MPFEAP where n = 1 show 
stability of the model LS1. The LS1, as said previously, doesn’t try to approximate the 
displacement fields, but only stresses, which is an easier way to approach the phenomenon. 
It’s surely the reason why results of LS1 are steadier and less influenced by both the number 
of layers and the degree of orthotropy. MPFEAP provides very good estimations even for 
high orthotropic material degree E1/E2, situation where other approaches are less efficient. 

4.3 Impacted plate (02/452/902/-452)S 
When is considered the study of an impacted plate as in Bouvet and al. [27] with a hertz 
contact law for the impactor. The plate dimensions are 100×150 mm² and a total thickness of 
4.16 mm. The material properties for the impactor are E=207GPa, ν=0.3, ρ=7800kg/m3 and 
the experimental indentation coefficient used in the impact law are Sp=0.094, αp=0.0167. 
Calculating the Von-Mises equivalent interface stresses given by: 
 

 , 1 , 1 , 1 , 1( )² 3(( )² ( )²)j j j j j j j j
eq x yσ ν τ τ+ + + += + +  (7) 

Where ν j,j+1 and τj,j+1
α are given in (1). 

The results obtained by plotting isovalues of this equivalent stress are very close to the pattern 
of delamination found in [27] by C-scan and mode I energy release rate calculation as we can 
see in Figure 1, even though damaging is not taking into account in this study.  
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      Figure 1. Comparison between equivalent interface stresses given by (7) of MPFEAP (left and purple line     
corresponding to critical value of σeq) and delaminated areas found in Bouvet [27] by C-scan (right and purple 

line) for a (02/452/902/-452)S plate impacted at its center . 
 
 
4 Conclusion 
The approach belongs to the layerwise multilayer plate modeling. It could be described as a 
superposition of Reissner plate bonding together. Each layer is characterized by the same 
displacement and constraint fields. The finite element code MPFEAP based on a multiparticle 
model of multilayered materials is developed here for the dynamic case and tested for free 
vibration and impacted plates. Solutions of HOSTs and of 3D elasticity models are used as 
reference in both cases. Considering the influence of orthotropy in (0/90)n plates, MPFEAP 
has been more efficient than HOSTs, and not under influence of E1/E2. Moreover, it shows 
some good primary results when studying the impact of a plate to predict delamination, and so 
delamination criterion and law will be implemented in next MPFEAP version in progress. 
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