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Abstract

A new G finite element (FE) model has been proposed is plaiper for the static analysis of
laminated soft core sandwich plates based on higitar zigzag theory (HOZT). The variation
of the in-plane displacements are considered toubéc for both the face sheets and the core,
while the transverse displacement is assumed tp quaadratically within the core and remains
constant in the faces beyond the core. It satidfies conditions of transverse shear stress
continuity at the layer interfaces as well as fiaisthe zero transverse shear stress condition at
the top and bottom of the plate. As very few eletsidrased on this plate theory (HOZT) exist
and they possess certain disadvantages, an attesteen made to develop this new element.
The nodal field variables are chosen in an efficrmanner to overcome the well-known problem
of continuity requirement of the derivatives ofrtsaerse displacements in the present refined
plate theories. A nine node Quadratic plate finite element is implemented wdel the HOZT

for the present analysis. Numerical examples cagedlifferent features of laminated composite
and sandwich plates are presented to illustrata¢heracy of the present model.

1 Introduction

Laminated composites are relatively weak in shertd their low shear modulus compared to
extensional rigidity and this becomes very compiexsandwich structures as the material
property variation is very large between the cond &ace layers. Thus the effect of shear
deformation is quite significant and needs speaftdntion. For these kinds of structures, exact
three dimensional (3D) solutions are required tedmt its response accurately. Such 3D
solutions are available only for simple boundargditons and geometries [1]. 3D finite element
(FE) solution is computationally expensive and mfitgractable. Hence, the development of an
appropriate mathematical two dimensional (2D) mottelrepresent the behavior of fiber
reinforced composite laminates has drawn a coratleramount of attention. These plate
theories (2D) can be broadly divided into two catégs based on their assumed displacement
fields: 1) Single layer theory and 2) Layer-wisedhy.
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The structural behavior of sandwich laminate cafm@oaccurately predicted by first order shear
deformation theory (FSDT) as it assumes uniformsvarse shear strain over the entire plate
thickness requiring a shear correction factor T2je further improvement comes in the form of
higher order shear deformation theory (HSDT), whitxe higher order variation of in-plane
displacement through the thickness is considerecepoesent the actual warping of the plate
cross-section due to which it (HSDT) becomes freenfshear correction factor [3]. It [HSDT]
gives a continuous variation of shear strain actiesshickness, which gives discontinuity in the
shear stress distribution at the layer interfaces © different values of shear rigidity at the
adjacent layers. But the actual phenomenon is fust opposite i.e., the shear strain is
discontinuous and the shear stress is continuotiedayer interfaces [4]. In order to consider
above aspect, the refined plate theories develststing with layer-wise plate theories [5]. In
layer-wise plate theories the unknown displacenmmhponents are taken at all the layer
interfaces, which give a zigzag pattern of throutiickness variation for the in-plane
displacement to represent the desired shear disgontinuity at the layer interfaces. As the
number of unknowns increases directly with theease in the number of layers due to which
these (layer-wise) theories required huge compurtati effort. The problem of layer wise
theories has been overcome by considering the wrkn@t all the interfaces are expressed in
terms of those at the reference plane. This iseaekli by satisfying the condition of shear stress
continuity at the layer interfaces.These theorieskaown as zigzag theories (ZZT) in general.
In some improved version of these theories [647@, ¢ondition of zero transverse shear stresses
at the plate/beam top and bottom was also satisfied unknown transverse displacement fields
across the depth in addition to that in the refeegolane are essential for accurate prediction of
the variation of transverse deflection.

Based on higher order zigzag theory, Pandit e{8lproposed a model for the static and
buckling analysis of sandwich plates with soft coaggible core. By defining the separate field
variable for the derivatives of transverse disptaeet, the authors [7-8] overcame the problem
of C; continuity. Due to this some constrains have begosed which are enforced variationally
through penalty approach. However, choosing swetablue for the penalty stiffness multiplier
is a well known problem in the finite element meathdrecently Chakrabarti et al.[9] has
overcome the shortcomings of the FE model presemyeithe authors [7-8] and proposed @ C
one dimensional FE model based on higher orderagigheory for the analysis of soft core
sandwich beam structures. The displacement figlelclosen in an effective manner so as no
need to impose any penalty stiffness.

Keeping all this in mind, static problems of lantedhsoft core sandwich plates are solved using
a newly developed {FE model based on higher order zigzag theory.iidptane displacement
fields are assumed as a combination of a lineaagigunction with different slopes at each layer
and a cubically varying function over the entiréckiness. The out of plane displacement is
considered to be quadratic within the core andtemnsn the face sheets. The model satisfies the
transverse shear stress continuity conditions atldier interfaces and the conditions of zero
transverse shear stress at the top and bottomeopltte. The isoparametric quadratic plate
element has nine nodes with eleven field variablesach node. The displacement fields are
chosen in such a manner that there is no needgosenany penalty stiffness in the formulation.
The element may also be matched quite convenieiitihyother G elements.
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2. Mathematical formulations

To ensure a piecewise parabolic variation of trarsy shear strains across the thickness with
discontinuity at the layer interface as expected layered plate [1], the in-plane displacement
fields [9,14] are chosen as follows:

U :u0+zé?x+mz_l(z—zi“)H (z—zi”)aj(u +nz_l(z—z'j)H (—z+ z'j)a>£| +B.2° +n,2° (1)
=) =

V =y, +126, +nuz_l(z—zi“)H (z—;“)aiyu +nz_l(z—z'j)H (—z+ z'j)a)j,, +B,2° +n,7° (2)
=) =

where,up andvpdenotes the in-plane displacements of any poitthemmid surface, andd,are
the rotations of the normal to the middle planewttibe z-axisn, andn; are number of upper

and lower layers respectivelg, By, 1x andyy are the higher order unknowm,,,a,,a) and

aj,, are the slopes of i-th/ j-th layer correspondiagupper and lower layers respectively and

H(z-z') andH(-z+ z'j)are the unit step functions.
The transverse displacement is assumed to varyraially through the core thickness and
constant over the face sheets [9] and it may besszpd as,
W =lw, +l,w,+Iw for core
=w, for upper face layers
=w for lower face layers 3)

The stress —strain relationship of an orthotropiet/ lamina (sak-th layer) having any fiber
orientation with respect to structural axes syspetz) may be expressed as

{9 =[oc e} @
where{E} {E} and [@] are the stress vector, the strain vector and trestormed rigidity

matrix ofk-th lamina, respectively.
Utilizing the conditions of zero transverse shdeess at the top and bottom surfaces of the plate
and imposing the conditions of the transverse ssieass continuity at the interfaces between the

layers along with the conditions,= u, andv = v, at the top and = u, andv = v at the bottom of
the plate Sy, nx, By, 1y al,» ay ,aiyu,aiy, , (0w, /0x) , (dw / ax) (9w, / dy) and (dw / dy) may be

expressed in terms of the displacemegis, 6y, 6y, uy, u, vyandv, as

{8} =[Al{a} (5)
where,

{B} :{IBX”X ﬁy’]y a)J(-u afu a)rgtlj_la)ﬁ aX% "'a)r(}l_lay:tl ayﬁ a;tlj_ layllaylz"'agll_ :

T T
(0w, /ax) (aw, /ay) (aw /ax) (aw /ay)} , {a} ={uovob, 8, u, v, u vi}
and the elements ofA] are dependent on material properties. It is tonb&ed that last four
entries of the vectorB} helps to define the derivatives of transversgldisement at the top and
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bottom faces of the plate in terms of the displa@@isuo, Vo, 6, 6y, Uy, Wy, U @andv; to overcome
the problem of €continuity as mentioned before.

Using the above equations, the in-plane displaceffireids as given in equation (1-2) may be
expressed as

U:blu0+b2VO+bﬁx+bﬂy+béju+bé/u+byl+b¥| (6)
V:Clu0+CZV0+C39x+Cﬂy+CéJu+Cé/u+cjf'll+C¥I (7)
where, the coefficientls’s and ¢s are function of thickness coordinates, unit stextions and
material properties.

By imposing four additional conditions obtained dgtisfying the in-plane displacements at the
top and bottom of the plate, four first order datives terms of transverse displacements are
replaced in terms of nodal field variables)@ equation (5). Thus the in-plane displacement
fields expressed in Egs. (6) and (7) do not consaiw first order derivatives of the transverse
displacement and therefore the requirement jofddtinuity of HOZT has been avoided very
efficiently without defining new field variables @nvithout using any penalty method.
The generalized displacement vectdy for the present plate model can now be writtethviie
help of equations (3), (6) and (7) as

T

{0} :{uovowoeX 6, U, vy W, Uy vw}

Using linear strain-displacement relation and eiquat(1)-(5), the strain field may be expressed
in terms of unknowns (for the structural deformajias

{E} _{au 0V OW U , 0V oU , oW oV aw} of {E} “[H]{e

- - = 4

8
ox dy 0z o0x ay 9z Ox 9z ox ®

where,
{ €} =[uo Vo Wo 8 6, Uy Vi, W, Uy Vi Wi (QU6/0x) (BU/3Y) (v o/0X) (3V o/ 9y) (9w /0X) (9w ) (06, /Ox)
(96,/y) (06, /9x) (96, /ay) (u, /0X) (3u, /3Y) (3v, /9x) (3v,,/3y) (9w, /9x) (Ow, /dy)
(3uy /0x) (3u, /3y) (8v; /0x) (v, /ay) (dw /0x) (dwy /ay)]
and the elements offf] are functions of z and unit step functions, aggiin Appendix C.
With the quantities found in the above equatiohs,tbtal potential energy of the system under
the action of transverse load may be expressed as
M, =U,-W,, 9
whereUs is the strain energy andl,, is the energy due to the external transverse statet
Using equations (3) and (6), the strain enekdy s given by

US%ZHI{Z}T[GJ{}dedydz:%ﬂ}emo}edxdy (10)
where,  [D] =§n: JrtQun e (11)
k=1

and the energy due to externally applied distridbutansverse static load of intensiffx,y) can
be calculated as

W, = .U wodxdy (12)
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In the present problem, a nine-node quadratic elemweh eleven field variablesud vo, wo, 6y,
Oy, Uy, Vu, Wy, Ui, vi andw;) per node is employed. Using finite element mettimdgeneralized
displacement vectors} at any point may be expressed as

{4} éiNi{d.} (13)

T , : : :
where, {9} ={uov0W06?X 6, U, V, W, Uy v, W|} as defined earlierg; is the displacement vector

corresponding to nodeN; is the shape function associated with the nad&lN is the number
of nodes per element, which is nine in the prestemty.

With the help of equation (13), the strain vectef that appeared in equation (8) may be
expressed in terms of unknowns (for the structdefbrmation) as

{e} =1B1{3} (14)
where B] is the strain-displacement matrix in the Cartegiaordinate system.

The elemental potential energy as given in equaf@nmay be rewritten with the help of
equations (10)-(14) as

=3 | |11 (el [o1E e ooy || (o (el v ey

= {8 ko -8 {R) (15)
where,[K,] = j [B]" [D][B]dx (16)
and{P} = J' J'[ NY Tgixdy (17)

where, N"] is the shape function like matrix with non-zerms associated only with the
corresponding transverse nodal displacements.

The equilibrium equation can be obtained by miningzlle as given in equation (15) with
respect to §} as, [K,]{d} ={R} (18)
where K¢ is the element stiffness matrix ane is the nodal load vector.

A numerical code is developed to implement the abmentioned operations involved in the
proposed FE model to calculate deflections andsst® in the sandwich plate. The skyline
technique has been used to store the global st#fmeatrix in a single array and Gaussian
decomposition scheme is adopted for the solution.

3. Numerical results
To check the accuracy and applicability of the pneé<G plate FE model, various problems of
laminated sandwich plates are solved under sta#idihg. The results obtained are compared
with publish results and 3D elasticity results [Ihe following non-dimensional quantities are
used to show different results in this paper:

Non-dimensional in-plane stresses, Non-dimensitraakverse shear stresses, Non-dimensional
transverse displacement,

100E h*w

h (T Typ)and w=—— respectively,
a a

_ h2 - _
(JX’UV’UXy):?(UX,UX,UX),),(TXZ,Tyz) =
0] 0

o

5
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wherea, h are the dimension of plate alorglirection andz-direction respectively.

3.1. Four layered laminated composite plate (0/90/90/0) under sinusoidal loading

In this problem, the layers are of equal thickndsse material properties used here and in all
subsequent problems are shown in Table 1. Thetse&ul the non-dimensional displacements
(transverse) and stresses (transverse shear gotah@-normal) are presented in Table 2 to study
the rate of convergence and validation of the disginents and stresses by considering different
thickness ratiol{/a) ranging from 4 to 100 considering the full pldtanay be observed in Table

2 that the displacements converged at mesh divi8k#h However, more mesh divisions are
required for the convergence of the stresses. A8 aumesh division of 12x12 is taken for all
subsequent analysis to get sufficiently accuragalte for displacements and stresses.

Example Layer/ Material properties
sheet  Ei(psi) Ex(psi) Es(psi) Gia(psi) Gis(psi) Gaa(psi) v
Composite platesAll layers 25.0E06 1.0E06 1.0E06 0.5E06 0.5E06 0.2E06 0.25
Sandwich plates Face 25.0E06 1.0E06 1.0E06 0.5E06 0.5E06 0.2E06 0.25
Core 4.0E06 5.0E045.0E04 16.0E04 6.0E04 6.0E04 0.25

Table 1. Material properties for laminated plates

From Table 2, it may be observed that the perfoneani the present FE model is quite good as
compared to other models especially at lower treskrratiol/a).

3.2. Un-symmetric laminated sandwich plate with different boundary conditions

An un-symmetrical simply supported laminated sawctivplate (0/90/C/0/90) is considered for
the analysis in this example under the sinusowmkadihg. The core has a thickness ohOahile

it is 0.1h each for the two laminated faces, whieie 1 inch) is the overall thickness of the plate.
Material properties are as shown in Table 1. Th&tians of the in-plane normal stress (at the
plate center) and the in-plane shear stress (atdimer) across the depth obtained by the present
FE model are shown in Figure 3 and Figure 4 withrésults of the 3-D elasticity solution [1].
The variations of the results of these two modedsfaund to match quite well in both the cases.

0.5 0.5
g g
< =
T 0.0 TE;esent § 00l — Present
S gano[1 = --- Pagano[1l
S 05 Z 05
a 0 1 -0.06 0.00 0.06
Non-dimensional in-plane normal str Non-dimensional in-plane shear stress
@ (b)

Figure 3. Variation of a) in-plane normal stress and bylemne shear stress across the depth of
un-symmetric sandwich plate (0/90/C/0/9&)h(= 10).
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alh  Ref. w Ox ay T Ty Ty
4 Present (4x4) 2.0015 0.7105 0.6921 0.2216 0.2458 0.0428
Present (8x8) 1.92970.6894 0.6801 0.2198 0.2306  0.0427
Present (12x12) 1.9298).6848 0.6759 0.2160 0.2283  0.0426
Pagano [1] 1.93670.6843 0.6655 0.2193 0.2915  0.0522
Kapuria and Kulkarni [6] 1.9076 0.7382 0.7023 0.2305 0.2291 0.0437
0.2386 0.3183
Rodrigues et al. [11] 1.89310.6408 0.8506 0.2160 - 0.0436
Ferreira et al. [12] 1.70950.4059 0.5764 0.2825 - 0.0308
Roque et al. [13] 1.88640.6650 0.6295 0.2193 - 0.0343
10  Present 0.73130.5595 0.4057 0.3013 0.1904 0.0272
Pagano [1] 0.73700.5591 0.4026 0.3014 0.1960 0.0254
Kapuria and Kulkarni [6] 0.7366 0.5627 0.4094 0.3148 0.1460 0.0274
0.3049 0.1980°
Rodrigues et al.[11] 0.72270.5460 0.4194 0.2978 - 0.0269
Ferreira et al.[12] 0.66270.4989 0.3614 0.3367 - 0.0241
Roque et al.[13] 0.71360.5458 0.3885 0.3186 - 0.0092
100 Present 0.43010.5402 0.2697 0.3387 0.1031  0.0212
Pagano [1] 0.43460.5390 0.2681 0.3387 0.1389  0.0213
Kapuria and Kulkarni[6] 0.43500.5407 0.2720 0.3530 0.1035 0.0214
0.3371° 0.1374
Rodrigues et al.[11] 0.42940.5364 0.2699 0.3345 - 0.0211
Ferreira et al.[12] 0.43370.5382 0.2705 0.3596 - 0.0213
Roque et al.[13] 0.43590.5403 0.2714 0.3462 - 0.0215

4. Conclusions

An improved @ plate finite element (FE) model has been developddis paper for the static

analysis of laminated sandwich plate with soft cditee continuity requirement of the derivates
of transverse displacement is circumvented by #ifely choosing the nodal field variables.
There is no need to use penalty functions in then@itation as used by many previous
researchers. Some numerical examples are solvatifferent problems of laminated composite

and sandwich plates.
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