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EXQGOH� RU� D� IDEULF� GHFUHDVHV� VLJQLILFDQWO\�� 7KH� SUHVVXUH�� QHFHVVDU\� WR� DFKLHYH� WKH� GHVLUHG�
ILEUH� YROXPH� IUDFWLRQ� LQ� D� FRPSRVLWH�� VKRXOG� EH� LQFUHDVHG� E\� VHYHUDO� EDUV�� 7KH� SDSHU�
SURSRVHV�PRGHOOLQJ�DSSURDFKHV�IRU�FDOFXODWLRQ�RI�WKH�FKDQJH�RI�FRPSUHVVLRQ�UHVLVWDQFH�RI�WKH�
&17�JUDIWHG�ILEUH�EXQGOH�DQG�IDEULF���

 
 

��,QWURGXFWLRQ�
Growth of carbon nanotubes (CNT) or carbon nanofibres (CNF) on fibrous substrates is a 
widely investigated method for introduction of nano-reinforcements in fibre reinforced 
composites (FRC). The nano-engineered FRC (nFRC) exhibit significantly improved 
toughness properties such as the fracture toughness, the interlaminar shear strength and the 
load threshold for damage initiation [1-3]. The successful developments of tough nFRC have 
drawn attention to manufacturability of these composites. We discovered [4] that the random 
“forests” of CNT/CNFs on carbon fibres are not easily compressible, this is in spite of the 
seemingly flexible and deformable thin and long CNT/CNFs, which, when in contact, have 
very low friction between them. To regain the targeted fibre volume of the composite after 
CNT/CNF grafting, the compaction pressure has to be increased by several bars in 
comparison with the compaction pressure for a “virgin” preform (which lies in the range from 
1 bar for vacuum infusion up to several bars for autoclave or RTM processes). In this paper 
we propose a model for calculation of the compression resistance of a random CNT assembly, 
which is further used as a building block in a model of compression of a bundle of 
unidirectionally (UD) arranged fibres (carbon fibres in most of applications) with CNT 
random forest grown on or between them. Once the compression of a fibre bundle is 
calculated, the predicted compression diagram can be used as input for deformation models of 
textile preforms (compression, shear, tension). This upgrades the hierarchical scale of the 
model to the nano-micro-meso chain, with subsequent use of it in macro-scale simulations of 
composite forming processes. This paper outlines the mathematics of the models. The reader 
is referred to a full description of the models and the experimental data in [4-7]. 
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���&RPSUHVVLELOLW\�RI�D�&17�DVVHPEO\��
We consider multiwall CNTs (MWCNT) with diameter of the outer wall G, number of walls 
1, inter-wall distance Zδ =0.34 nm. CNTs in the assembly are mechanically represented by 
fibres with diameter G and certain bending rigidity. The length of the CNT is assumed to be 
much larger than the distance between contacts of CNTs in the assembly. The CNTs have a 
curved shape; the orientation of the local tangent W�W� , W� , W� ) to the centre line of the CNT is 
given by angles ϕ and θ: πθπϕθθϕθϕ ≤≤≤≤=== 0   ;0   ;cos  ;sinsin  ;sincos ��� WWW �
where the ]�axis of the Cartesian coordinate system [\] corresponds to the direction of the 
compression loading of the assembly. The orientation distribution function (ODF) ( )θϕ ,Ω  
gives the probability of W belonging to an element of a unit sphere θθϕ GG sin⋅  and is 

normalised as ( )∫ ∫ =Ω
π π

θθϕθϕ
0 0

1sin, GG . As an example a 3D-uniform distribution will be 

considered. In this case ( )
π

θϕ
2
1

, =Ω . 

A bulk density ρ��is the main measurable parameter of the CNT assembly, directly related to 
the volume fraction of the CNT in it. The density of MWCNT wall is ρ 	 =2 g/cm3, referring to 
the wall volume defined by the inter-wall distance Zδ = 0.34 nm. The volume fraction of the 
fibres (considered as solid curved rods) with the diameter G representing the CNT is 
calculated as 
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For the characteristic value ρ�= 0.3 g/cm3��9�  = 0.17. 
The mechanical properties of the CNTs in the assembly are characterised by their bending 
rigidity. The initial bending rigidity %   of a single wall (SWCNT) or multiwall (MWCNT) 
carbon nanotubes is calculated as follows: 

( ) ( ) )1(2   ;;
64

 ;
64

4444
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where ( 	  is the Young modulus of the CNT wall, corresponding to the wall thickness equal to 
the inter-wall distance Zδ , < is the moment of inertia of the CNT cross-section, ' �����  and ' � �  
are diameters of the outer and the inner walls. It is assumed that interactions between the CNT 
walls are negligible in comparison with the resistance provided by deformation of the 
elementary tubes (“ sword-in-sheath”  effect). For the typical parameters of the MWCNT %   = 
7.77⋅106 nN⋅nm2. The value of ( 	  = 1 TPa is introduced here as a “ rule of thumb”  theoretical 
value often assumed in the mechanical calculations of CNT.  
When a hollow tube is bent, after certain critical point it loses stability and buckles. This 
phenomenon for CNTs has been studied experimentally and numerically [8,9], and the 
following criterion for buckling has been established: the CNT buckles when �κκ >  where κ�
is the curvature of the mid-line of the CNT. A formula 2/ G$� =κ  has been proposed in [9] 
for calculation of the critical value κ � with $ ������nm for SWCNT and $ = 0.048 nm for 
DWCNT [8]. The curvature is calculated as 

)2/(arcsin EE
T=κ  
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where E is the half-length of the CNT, T is the bending deflection. Hence the critical 
deflection T!  for onset of the buckling can be calculated as 







= G

E
G
$ET " 2sin          

When the buckling state is reached, the effective bending rigidity of the CNT drops, and after 
that the bending moment stays approximately constant with the increase of the curvature. This 
leads to the formula for dependency of the CNT tangent bending rigidity on the curvature: 

( )


 >=<= #### %%%% κκ

κ
κακκακκκ ,;,;, 000        

where %�κ�� is the bending rigidity, corresponding to the curvature κ, α is the coefficient of 
decrease of the bending rigidity on the onset of buckling ((UURU�� 5HIHUHQFH� VRXUFH� QRW�
IRXQG�b). The experimental data and calculations in [8] suggest that α�≈�0.5 can be adopted as 
a reasonable value for different cases of CNT diameter, number of walls and chilarity. 
The friction between CNTs is characterised by the friction coefficient � and adhesion force 
) $�%�& : friction force )'�(*) +�,  for a given normal force ) - � is calculated as )'�(.) +*, �  � ��) - �) $�%�& �. 
Measurements and atomistic modelling in [10-12] suggest as characteristic values �=0.005 
and ) $�%�& = 1 nN.  
The description of the geometry of a random CNT assembly follows the approach, developed 
for fibrous assemblies in [13]. Average distance between the contacts E is calculated, based on 
the probability of contact between the fibres, as 

,9GG/,
9E /1

82
π== ,          

where 9 is the volume of the assembly, / is the total length of the fibres in the assembly, and 
the orientation averaging is represented by integral ,, which is calculated as 

( ) ( ) ( ) ( ) ( )[ ]∫ ∫∫ ∫ ′′−′+′−′′′Ω′=Ω=
π ππ π

θϕϕθθθθθϕθϕϕθθθϕθϕθϕ
0

2/

0

2

0

2/

0

cossinsincoscos1sin,2,;sin,,2 GG-G-G,  

The factors “ 2”  and integration from 0 to 2/π  appear here because of symmetry of the ODF 
( )ϕθ ,Ω . For uniform ODF ,� �π���= 0.785. Note that the same symbol is used for the average 

distance between the contacts and for the half-length of the elementary bent interval of a 
CNT, which corresponds to the fact that bending of the CNT is the result of contact 
interactions. For the typical parameters of the CNT assembly E�= 60 nm. For the following 
calculations the average projection of the inter-contact interval on the ] axis, E0 , is needed. For 
an individual inter-contact interval θcosEE1 = ; orientation averaging of this dependency 

gives the average value of  E0  as E.E2 4= ;  ( )∫ ∫ Ω=
2/

0

2/

0

cossin,
π π

θθθϕθϕ GG. . For the 

uniform ODF .�= 0.125.�
The number of contacts between CNTs per unit volume of the assembly Q +  is calculated 

as 3

2

2

16
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9,E9
/Q 3

4
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== . For the uniform ODF 3

2

27.1 G
9Q 5

6 = , and for the typical assembly 

parameters assembly Q +  = 4587 µm-3. 
The calculation of the compression resistance of a CNT assembly is based on the approach, 
developed for fibrous assemblies in [14], We further develop the model [14] to account for 
phenomena specific to CNT assemblies: buckling of CNT and the exceptionally low friction.  
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Consider a pressure S which creates forces ) on the contact points of the assembly. Fig 1 
depicts these forces at a contact point O.  
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Figure 1 Forces in the contact points: (a) force components and displacement at a contact point O; (b) bending of 

a fibre at non-sliding contact at point O, supported by the neighbouring contacts at points A and B. 

We assume that the resultant forces at all the contact points have a vertical (]) direction. 
Consider a volume of the assembly with dimensions �x�xE=  (thickness corresponding to the 
average projection on ]-axis of the mean distance between contacts). Following [14], we 
assume that the pressure S is evenly distributed over the contacts in this volume, and the mean 
force at the contact point is calculated as 
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For the typical assembly and S� ���bar ) FHG�I�J  = 0.74 nN. 
Slipping at a contact will occur if ) K!)L�M*N O*K . Let θ be the orientation of the fibre under 
consideration. The scheme of Fig 1 shows that the slipping condition can be written as 

( )P�Q�RS.T U VXWW ))))) +>⇒> θµθ cossin  

Using ) FYG*I�J  as a value of the contact force, this condition leads to the following condition for 
slipping: 
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For the typical assembly and S�  � �� bar θ a.b N c = 89.3°. The very high value of the slipping 
threshold is the result of a very low friction coefficient. This feature distinguishes the CNT 
assembly from fibrous assemblies dealt with in the previously developed models for non-
woven textile materials. 
The proportion of slipping (F a.b N c ) and non-slipping (F J�d�J�e a*b N c ) contacts in the assembly is 
calculated as 

( ) ( ) f g h if g h ij�k.jf g h i FFGGGF
l m n ol m n o

−=Ω=Ω= −∫∫ ∫ 1;sin,2sin,4
0

2/

0 0

θπ θ

θθϕθπθθϕθϕ     

For the typical assembly and S� ���bar F aXb N c  = 0.9950. This gives the number of non-slipping 
contacts as 24 µm-3 out of 4587 µm-3 in total. 
Consider first a slipping contact. The force ) can be calculated from 

θµθ
µµθµθ

cossin
cossin

−
=⇒+= p q�rp q�r

)))))  

The average force on the slipping contacts )a*b N c  will be 
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For a uniform ODF and µ���:  ) a.b N c ≈µ) I���� . 
The average force on non-slipping contacts ) J�d�J�e a.b N c  will be calculated from the assumption of 
even distribution of the pressure among slipping and non-slipping contacts. 

( ) � � � �
� � � �� � � ��C� ���� � � ����*�� � � ����*�� � � �� � � �� � � ��C� ��� F
)F)))F)F)

−
−

=⇒−+= −− 1
1      

For the typical assembly and S� ���bar, ) �H�*���  = 0.74 nN, ) �.� � �  = 0.005 nN, ) ������� �*� � �  = 98 nN. 
Fig 1b shows a scheme of loading of a CNT at a non-slipping contact at point O. The CNT is 
bent under the normal component of the force ) �  as an elastic beam with float �E, freely 
supported at the ends A and B – neighbouring contacts (which can be slipping or non-
slipping). If the CNT does not buckle, then the deflection in the direction of normal force is 

calculated as �)N%
ET

3

= , where N depends on the place of application of the force, and % is the 

bending rigidity of the CNT. Assuming that the force is applied in the centre of the float, and 
the CNT is straight between the contacts, N� ���. For the force in non-slipping contacts of 98 
nN, estimated above, the deflection T is estimated as 0.11 nm.  
Introducing the bending equation into the buckling condition and using the average value of 
the force at the slipping contact to calculate the normal force ) �  ) ������� �.� � � FRVθ , one arrives to a 
threshold value of the orientation θ �����.��� � : buckling occurs if 
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Accounting for possible buckling of the CNT, the ]-projection T§  of the�deflection at a non-
slipping contact with orientation of the CNT given by the angle θ is calculated as 
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When an increment of pressure S∆  is applied, resulting in the pressure S, and assuming that 
the sliding contacts are restricted in their movement by the non-sliding contacts, then the 

increment of deformation of the assembly can be calculated as 
0°
°

E
T∆=∆ε , where 

subscript 0 corresponds to the non-deformed configuration, and the average ]-projection of 
the displacement ∆T§  under an LQFUHPHQW of the force ∆) ������� �*� � �  (caused by an increment of the 
applied pressure ∆S) is calculated by orientation averaging: 
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The compression modulus is calculated as ε∆∆= /S( . After the load increment the 

deformation will reach a value ε, and the volume fraction of fibres/CNT will be 
ε−

=
1

0
¼¼ 99 ½
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Using formulae from [15], the ODF ( )ϕθ ,Ω  after a compression deformation ε can be 
calculated using initial ODF ( )ϕθ ,0Ω  as 

( ) ( )  ;1          ;
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sin ;

tan1
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���&RPSUHVVLRQ�RI�D�ILEUH�EXQGOH�
We consider a bundle of fibres. The shape of the bundle cross section is not important – the 
bundle can be a round or elliptical yarn, a flat roving etc. The bundle has a certain resistance 
to compression, which can be characterised by a compression diagram “ thickness vs 
pressure” . This compression curve of a virgin fibre bundle is assumed to be known. The 
model calculates WKH�FKDQJH of the compression curve after a random assembly of CNTs is 
grown on the fibres. Two possible morphologies of the CNT growth will be considered 
(Fig 2): a random CNT “ forest”  concentrated near the surface of the fibres (“ S-model” ) and a 
random CNT assembly homogeneously filling the volume between the fibres (“ V-model” ). 
The real morphology is a combination of the S-and V-models. 

 

d 
t 

a b 

d 

c      d 
Figure 2 Two schematic configurations of CNT-grafted fibre bundle and Interaction of CNT-grafted fibres in S-

model: (a) S-model; (b) V-model; (c) a pair of interacting fibres; (d) random realisation of 100 CNT-grafted 
fibres, Vf=0.4, t = 1 µm. Lines show fibre pairs with compressed CNT layer. 

 

For the 9�PRGHO�The fibre volume fraction in the bundle is calculated as KZ
79 ÀÀ
ρ

= , where 

7 is the linear density, Z – initial width and K�±�thickness of the bundle. Assuming a uniform 
distribution of the CNTs in the inter-fibre volume, the initial average density of the CNT 

assembly is calculated as Á
ÂÁÁÃÂ 9

P9
−

=
1

ρ
ρ . Applying the model of compression of a random 

CNT assembly, described in the previous section, the compression diagrams ε Ä �S� of the 
inter-fibre CNT assembly are calculated. The compression diagram of the grafted bundle is 
calculated based on the assumption: the pressure acting on the inter-fibre CNT assembly and 
on the assembly of fibres in the bundles is the same as the pressure applied to the grafted 
bundle (“ hydrostatic Pascal law” ). Under this assumption 

( ) ( ))(1)0()0()()( SKKSKSK ÅÆÅÆÅ ε−⋅−+=   

where K Ä �S� is the compression diagram of the grafted bundle, KÇ �S� is the compression 
diagram of the virgin bundle. 
In stead of a uniform distribution of the CNTs in the inter-fibre space, the 6�PRGHO assumes 
that the CNT are concentrated in layers with thickness W around the fibres (Fig 2c,d). In this 
case the initial average density of the CNT assembly is calculated as 
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The interaction of individual grafted fibres is calculated as follows. We consider two 
segments of fibres of a unit length in the compressed assembly with the centres at the 
distance D (D�±�'����W) and a CNT “ forest”  between them (Fig 2c). The fibres lay apart before 
the compression. We assume that the forest is compressed only in the region bounded by the 
thick lines in 2b. The volume of this region (per unit length of the fibres) before the 
compression is designated as Y Í , after the compression as Y Î : 

( ) ( )ϕϕϕϕ cossin
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where ( )D' −= 1,0maxδ . During the compression the compressive deformation of the CNTs 

in the grafting is given by 
0

11 Y
YÏ −=ε , and the mechanical work per unit length associated 

with the compression of the “ forest”  by 

( ) ( ) ( )∫∫ =−=→=
Ð

ÑÑ
Ò

Ò
Ñ GSYGYSYY:D:

ε

εεε
0

010

1

0

)(   

where pressure S�ε Ó � is the inverse of relation ε Ó �S���already calculated above. The next step is 
to calculate mechanical work ( )Ô9:  per unit volume necessary to compress the CNT layers 
around the fibres for randomly placed fibres with a given fibre volume fraction 9Õ . Generating 

a random realisation of 1Õ  fibres in a volume $×$�� Ö
Ö

9
'1$

4

2
2 π

= , let 0�be a number of pairs 

of fibres, which are sufficiently close for the CNT forests on them to be compressed (see an 
example in 2d). Then the mechanical energy per unit volume, associated with the compression 
of the forests, is calculated as 

( ) ∑
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=
×
Ø ØÙ

ÙÙ D:'1
99:

1
2 )(

4
π

  

where D Ú  is the distance between centres of a pair L of the neighbouring fibres. ( )Ô9:  can be 
interpreted as an additional pressure, needed to reach a given fibre volume fraction of the 
bundle. Then the compression diagram S Ó �K� of the CNT-grafted fibre bundle can be 
calculated as follows: 

( ) ( )[ ])())(()())(()( 00 K9:K9SK9:K9SKS ÛÛÛÛÛÛÜ +−+=      

where SÕ �K� is the compression diagram of the virgin bundle, 9Õ �K� is calculated using equation 
(1), and the last term is subtracted to account for the fact that the bundle has thickness K Ý  at 
zero pressure.  

���&RQFOXVLRQ�
The mathematical formulation of models of compression of CNT random assembly and a 
bundle of CNT grafted fibres has been presented. The reader is referred to [4-7] for 
experimental validation and more details on the models. 
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