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Abstract
In this paper, we present a new Fast Fourier Transform (FFT) based iterative scheme for com-
puting the effective properties of elastic composites materials. The macroscopic properties are
computed by solving the standard cell problem with periodic boundary conditions and sub-
jected to a uniform polarization. The solution of this problem is computed by means of an
iterative scheme which uses exact expression of the Green operators in the Fourier space. The
convergence of the approach is assessed and compared to existing FFT based iterative schemes
provided in the literature. Interestingly, it is shown that the polarization based algorithm has
the remarkable property to converge independently of the contrast.

1 Introduction
A key problem, of considerable technological importance, is to determine effective properties
of composites that are governing the behavior at the macroscopic scale. To reach this objective,
standard numerical tools has been used in the literature for solving the problem posed over the
unit cell of periodicity, as for example: the finite elements methods [8, 17], the Boundary Ele-
ment Methods [5], combined integral equations and multipole methods [7, 9, 11].
An alternative method has been proposed in the middle of the nineties by Moulinec et al. [16]
for the computation of effective properties of linear elastic periodic composite. The resolution
of the local cell problem is effected by an iterative scheme which uses the periodic Green’s ten-
sor for the strain and exact images of the microstructures. This method has several advantages
over other existing ones. First, it does not require the meshing of the phases but uses a regular
grid. The approach is particularly adapted for computing digital images obtained from modern
devices that characterizing the microstructure such as tomography. The discrete Fourier trans-
form and its inverse are computed with the Fast Fourier Transform (FFT) which significantly
increases the performance of the method. Moreover, the memory needed for solving the prob-
lem is significantly reduced compared to other methods.
However, the convergence of the FFT based algorithm introduced in [16] (called strain based
iterative scheme) is known to be very sensitive with the contrast between the phases. More
precisely, the rate of convergence decreases for stiff inclusions. Moreover the case of perfectly
rigid inclusions cannot be handled by the method since the algorithm diverges. A dual (or stress
based) formulation [1, 2] is better suited in the domain of contrast corresponding to stiff inclu-
sions. However, it is computationally costly in the domain of soft inclusions. To circumvent
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the incapacity of these basic strain or stress based iterative schemes, other methods have been
developed during the ten past years (see for instance [6, 12, 13, 3]).
In this paper we present a simple iterative scheme, based on the polarization, which uses the
same ingredients as the basic schemes and does not need sophisticated numerical tools. The
rate of convergence and the capacity of the method to handle the problem with extreme values
of the contrast is highlighted through several examples.

2 The unit cell problem
The composite is defined by a representative volume element (the unit cell) and its local prop-
erties, defined by the elastic tensor C(x) (and the compliance S(x) = (C(x))−1) which depends
on the vector position x. Classically, the local problem involves compatibility equations, lin-
ear elastic constitutive equations, equilibrium and periodic conditions at the boundary of the
considered unit cell: 

ε(x) = sym(∇u(x)), ∀x ∈V
σ(x) = C(x) : ε(x), ∀x ∈V
div(σ(x)) = 0, ∀x ∈V
u(x)−E.x periodic
σ(x).n antiperiodic

(1)

in which the stiffness tensor C(x) (resp. the compliance) of the heterogeneous medium reads:

C(x) = ∑
α

Iα(x)Cα, S(x) = ∑
α

Iα(x)Sα with : Iα(x) =

 1 if x ∈Vα

0 if x ∈V −Vα
(2)

Iα(x) for α = 1..M are the characteristic functions describing volumes Vα which comply with
∑α Iα(x) = 1. Prescribed macroscopic strain E =< ε >V or macroscopic stress Σ =< σ >V
are classically considered (the brackets denote the volume average over V ). The effective or
homogenized elastic properties are denoted Chom and Shom and are defined such that Σ=Chom :
E, E = Shom : Σ and Shom = (Chom)−1

3 Resolution with the strain or stress based iterative scheme
On the basis of the earlier works of [4, 10], Moulinec and Suquet [16] have proposed an original
method for computing the solution of the linear elastic problem (1). This approach uses an
iterative scheme for computing the solution of the Lippmann- Schwinger equation associated to
the elasticity problem (1). Indeed, by introducing a reference medium of rigidity C0, the system
of equations (1) can be rewritten into the form:

ε(x) =E−Γ0(x)∗ [(C(x)−C0) : ε(x)] (3)

in which the symbol ”∗” denotes the convolution product and Γ0(x) is the periodic Green func-
tion for the strain. Its, expression, in the Fourier space and for an isotropic elastic reference
material, is:

Γ0
i jkl(ξ) =

1
4µ0|ξ|2

[δikξ jξl +δ jkξiξl +δilξ jξk +δ jlξiξk]−
λ0 +µ0

µ0(λ0 +2µ0)

ξiξkξkξl

|ξ|4 (4)

where λ0 and µ0 are Lamé coefficients of the reference medium. The solution of that inte-
gral equation is expanded along Neumann series, each term being computed by means of the
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following recurrence relations:

εi(x) = F −1(εi(ξ))
σi(x) = C(x) : εi(x)
σi(ξ) = F (σi(x))
convergence test
εi+1(ξ) = εi(ξ)−Γ0(ξ) : σi(ξ)

(5)

which start from the first term given by: ε1(ξ) = E. In (5), F and F −1 denote the Fourier
Transform and its inverse. The macroscopic strain, E, is prescribed whereas the macroscopic
stress, Σ, is obtained at convergence of the iterative scheme (5). The algorithm is stopped when:

|εi+1(x)−εi(x)|
|εi+1(x)|

< e and
|σi+1(x)−σi(x)|

|σi+1(x)|
< e (6)

in which the value e = 10−3 has been used in our calculations.
Dually, the solution of the inhomogeneity problem (1), can be computed by using the following
iterative scheme: 

σi(x) = F −1(σi(ξ))
εi(x) = S(x) : σi(x)
εi(ξ) = F (εi(x))
convergence test
σi+1(ξ) = σi(ξ)−∆0(ξ) : εi(ξ)

(7)

which starts from the first term given by: σ1(x) =Σ. The macroscopic stress Σ is prescribed
to the unit cell, the macroscopic strain E is now considered as an unknown and is obtained
at convergence of the iterative scheme. In (7), ∆0(ξ) is the ”stress Green’s tensor”, given by
∆0(ξ) = C0 −C0 : Γ0(ξ) : C0. The convergence test (6) is used for evaluating the accuracy of
the local solution.

Remarks:
1. The exact Fourier transform is thereafter replaced by the discrete Fourier transform. The

discrete wave vectors, denoted ξ
n
, are taken from n = −N to n = N − 1. The discrete

Fourier transform and its inverse are computed by means of the Fast Fourier Transform
(FFT) algorithm which makes the algorithm faster.

2. In the real space, the unit cell is discretized along a regular grid. Each node of that grid are
denoted xn for n =−N..N −1. The resolution of the image is 2N ×2N for 2D-problems.

3. The elasticity tensors C(x) and S(x) are computed at each nodes of a regular grid and from
the exact images of the microstructures. Note that, for simple geometry of inclusions,
elasticity tensors are obtained from characteristic functions of the phase Iα(x) for which
the use of level-set functions makes their computation easier.

4. The elastic coefficients, λ0 and µ0, of the reference medium must be chosen adequately in
order to obtain the convergence of the iterative schemes. It has been proved (see [13] and
later in [14]) that the convergence of the basic iterative schemes is ensured if:

+∞ > 2k0 > k(x), +∞ > 2µ0 > µ(x) strain based scheme

0 < k0 < 2k(x), 0 < µ0 < 2µ(x) stress based scheme
(8)

with k0 = λ0 +2µ0/3 and k(x) = λ(x)+2µ(x)/3.
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5. For the numerical implementation of the strain and stress based iterative schemes, the
optimal values (giving the better rate of convergence) for λ0 and µ0 are:

k0 =
1
2
(kmax + kmin), µ0 =

1
2
(µmax +µmin) strain based scheme

k0 =
2

k−1
max + k−1

min
, µ0 =

2
µ−1

max +µ−1
min

stress based scheme
(9)

4 An iterative scheme based on the polarization
To circumvent some incapacities of the basic iterative schemes for high values of the contrast
(this will be shown in the next section), a new approach, formulated with the polarization, has
been proposed in [14] for elasticity problems and in [15] for the problem of thermal conduction.
In this section we propose to recall this new algorithm.
In the elasticity problem (1), we propose to replace the classic conditions E =< ε(x) >V or
Σ=< σ(x)>V by the following new condition T =< τ (x)>V=< (C(x)−C0) : ε(x)>V for
the local polarization τ (x). In that last condition, T represents a uniform polarization prescribed
to the unit cell. The solution of (1) with that new, non conventional, loading condition for the
unit cell, can be computed by using the following iterative scheme:

τ i(x) = F −1(τ i(ξ))

εi(x) = (C(x)−C0)−1 : τ i(x)

εi(ξ) = F (εi(x))

σi(ξ) = C0 : εi(ξ)+τ i(ξ)

convergence test

τ i+1(ξ) = τ i(ξ)−αC0 : Γ0(ξ) : σi(ξ)+α∆0(ξ) : εi(ξ)

(10)

where the coefficient α is chosen in order to obtain the better rate of convergence. At conver-
gence, εi(ξ) and σi(ξ) are the local strain and stress field generated by the application of the
uniform polarization T . It is then possible to compute the associated macroscopic strain and
stress: E =< εi(x)>V or Σ=< σi(x)>V . Subsequently, due to the linearity of the equations,
the relations giving the macroscopic strain and stress as functions of the uniform polarization
T can be read: E = A : T and Σ = B : T . The effective elasticity tensors are then defined by
Chom = B : A−1 and Shom = A : B−1.

Remarks:
1. The polarization based iterative scheme uses the same ingredients that the basic (strain or

stress based) iterative schemes: the Green operators, the FFT algorithm, a representation
of the elasticity tensor C(x) with a regular grid in the real space... The implementation of
this new iterative scheme is then nearly as simple as the strain or stress based algorithms.

2. It has been demonstrated in [14] that the convergence of the polarization based iterative
scheme is ensured if:

0 ≤ α < 2, −∞ < µ0 < 0, −∞ < k0 < 0 (11)

The above conditions have the remarkable property to be independent of the local elastic
properties. In this way, it is expected that the convergence is reached independently of the
contrast between the phases. This will be shown through numerical examples proposed in
the next section.
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5 Applications
We now investigate the rate of convergence of the basic schemes and the polarization based
algorithm through two numerical examples. The first one corresponds to a composite reinforced
by very soft or stiff long fibers. In the second example we consider two populations of very soft
an very stiff fibers.

5.1 Example 1:
We consider a 2D squared unit cell, represented on figure 1 (at the left), and containing circular
inclusions randomly distributed with a condition of non interpenetration. The radius of the
inclusions is R = 0.05 (the width of the cell has been normalized to 1). The cell contains
30 inclusions defining then a volume fraction of f = 0.24. Both phases, the matrix and the
inclusions are assumed to be incompressible and we denote by µM and µI their shear modulus.

Figure 1: At the left: the unit cell of the two-phases composite. At the right: strain distribution
when applying the uniform polarization T12 = 1 and other Ti j = 0.

The contrast between the phases is denoted c= µI/µM, the case c=+∞ corresponds to perfectly
rigid inclusions while the case c = 0 corresponds to voids. For the numerical implementation of
the iterative schemes a grid 256×256 has been used. Plane strain conditions are considered and
the unit cell is subjected to the macroscopic strain component E12 = 1 when the strain based
iterative scheme is used. For the stress and polarization based approaches, the components
Σ12 = 1 and T12 = 1 are respectively applied to the unit cell.
On figure 2, we represent the number of iterations, needed for obtaining the convergence of the
strain, the stress and the polarization based iterative schemes, as function of the contrast c (in a
log-log frame). The results show that the convergence of the strain based approach is obtained
when c < 1, i.e. in the domain of soft inclusions. In the domain of stiff inclusions, one observes
a linear dependence of the number of iterations with the contrast (in the log-log frame). It
suggests that for large values of c, the strain based iterative scheme becomes computationally
expensive and it diverges in the case of perfectly rigid inclusions (c = +∞). Reversely, the
stress based algorithm converges quickly in the domain of stiff inclusions but diverges in the
case of the cavity. When the polarization based iterative scheme is used, the convergence is
reached whatever the value of the contrast c. Note that, for the numerical implementation of the
polarization iterative scheme, we have put α = 3/2 and µ0 =−µM/2 for c < 1 but µ0 =−2µM
for c > 1.
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Figure 2: Number of iterations at convergence as function of the contrast c = µI/µM in the case
of the two phases composite.

5.2 Example 2
To check the ability of the polarization based method to deal with highly contrasted microstruc-
tures, we investigate the rate of convergence for three-phases composites which contain both
soft and stiff constituents. The unit cell considered in this second example is given on figure
3 (at the left). It is made up of an incompressible elastic matrix whose shear modulus is µM
which contains circular inclusions being arbitrary distributed within the unit cell. Two kinds
of inclusions are considered: (i) circular inclusions with the shear modulus µI1 = pµM and the
radius R = 0.1, (ii) circular inclusions with modulus µI2 = µM/p and the radius R = 0.03. The
inclusions are also considered incompressible. The contrast between the phases is controlled
by the parameter p which varies from 1 to 106 in our applications. Moreover, a resolution of
512× 512 has been considered for our calculations. Note that the particular case p = 1 corre-
sponds to a homogeneous material whereas the limited case p=+∞ corresponds to a composite
which contains both cavities and perfectly rigid inclusions.

Figure 3: At the left: the unit cell of the three phases composite. At the right: strain distribution
when applying the uniform polarization T12 = 1 and other Ti j = 0.

In our calculations a grid 256×256 is considered, the macroscopic loading is the same as in the
last example. The number of iterations at convergence is plotted in figure 4 as a function of the
parameter p, in the case of the microstructure ”a”, constituted of soft and stiff inclusions. The
logarithm of the number of iterations increases linearly with log(p) for the two basic schemes.
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As expected, the case of a composite made up of both voids and rigid inclusion (corresponding
to p =+∞) cannot be handled by these methods. When the polarization based iterative scheme
is used, the number of iteration increases with p but reaches moderate values. Note that, for
the numerical implementation of the polarization iterative scheme, the shear modulus of the
reference medium is µ0 =−µM.
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Figure 4: Number of iterations at convergence as a function of the contrast p= µI1/µM = µM/µI2
in the case of the three phases composite.

6 Conclusion
A new iterative scheme has been proposed for the computation of the macroscopic properties
of elastic composites. The method uses the same ingredients as the basic schemes: the peri-
odic Green tensors for the strain and the stress, the FFT algorithm for computing the Fourier
Transform and its inverse... No additional treatment or numerical tools (Lagrangian, conjugate
gradient,...) are required for its implementation. The approach uses an iterative scheme for
solving an elasticity problem expressed in terms of the polarization. It has been shown that the
condition ensuring the convergence of this new iterative scheme is independent of the elastic
moduli of the heterogeneous material. This result has been proven theoretically and tested nu-
merically through several examples. More specifically, it has been shown that the problem of
composites containing both voids and rigid inclusions can be solved by the method with a good
rate of convergence.
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