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Abstract 

This paper presents an analytical model for size effects on the longitudinal tensile strength of 

composite fibre bundles. Individual fibre strength is modelled by a Weibull distribution, while 

the matrix or interface is represented by a perfectly-plastic shear-lag model. A stochastic 

scaling law relating strength distributions of hierarchical bundles of different levels is 

derived, and an efficient numerical scheme (based on asymptotic limits) is proposed. Model 

predictions at different scales are validated against experimental results from the literature. 

 

1 Introduction 
Size effects on the strength of composite materials are widely reported in the literature and 

present a significant design challenge, but a universally accepted modelling strategy is still to 

be developed [1]. This paper presents a model for size effects on the longitudinal tensile 

strength of UniDirectional (UD) Fibre-Reinforced Polymers (FRPs), based on the stochastic 

variability of fibre strength and the definition of hierarchical fibre-matrix bundles [2]. 

 

Stochastic effects play a major role on the size vs. strength relation in FRP structures [1]. 

Under uniform (subscript  ) stresses  , the Weakest Link Theory (WLT) relates the survival 

probabilities of a reference element (    ) and of a chain of   elements (    ) by: 
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where    and    are the respective lengths of the reference element and the chain. Accordingly, 

Weibull [3] proposed a new type of distribution for the strength of brittle materials, so that the 

survival and failure probabilities of a chain under uniform stresses   are: 
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where   and    are respectively the shape and scale (measured at   ) parameters. 
 

While Equations 1 and 2 have been widely used to model the length effect on the strength of 

technical fibres [4], their direct application to FRPs is inconsistent with the quasi-brittle 

failure exhibited by these materials [5-9]. It has been suggested [1] that fibre bundle models 

overcome this limitation and capture most of the physics involved in the longitudinal failure 

of FRPs. 
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Newman and Gabrielov’s [10] dry fibre bundle model assumes a hierarchical failure process, 

which is supported by experimental observations of quasi-fractal fracture surfaces in FRPs 

[11-12]. Considering that a bundle of hierarchical level       is composed by two sub-

bundles of level    , they derived a recursive relation for bundle strength distributions: 
 

      ( )      ( )  [      (   )      ( )] (3) 

 

where     ( ) is the failure probability of a level-    bundle under an applied stress  . This 

model does not consider the effect of an embedding matrix, and does not include a process 

zone length (which is paramount for quasi-brittle materials [9]).  
 

This paper presents a new fibre-bundle model for predicting size effects on the longitudinal 

tensile strength of FRP (embedded) bundles [2]. Following Newman and Gabrielov’s work 

[10], bundles are hierarchically organised and scaling is based on the single-fibre strength 

distribution. However, the matrix (or fibre-matrix interface) is now considered through a 

simplified shear-lag model, with substantial implications on the derivation of the scaling law. 
 

In this paper, Section 2 presents the formulation of the model, subsequently validated against 

experimental data in Section 3; Section 4 discusses results and draws the main conclusions. 
 

2 Model development 

2.1 Methodology and definitions 

This model is based on hierarchical fibre-matrix bundles (Figure 1a). Section 2.2 defines their 

geometry and the respective shear-lag boundary (   ), which includes the effect of the matrix 

or fibre-matrix interface. This results in non-uniform stress fields near fibre breaks, hence the 

corresponding failure probabilities are derived in Section 2.3. 
 

Section 2.4 derives the hierarchical law for bundle failure, firstly considering the failure 

process of a 2-fibres bundle; the resulting relation between fibre and bundle strength 

distributions is then used recursively throughout bundle hierarchy. The numerical 

implementation of the model and derivation of asymptotic limits are described in Section 2.5. 
 

This paper expresses longitudinal stresses ( ) as fibre stresses. The concept of stochastic 

strength is extended to non-uniform stress fields, characterised by a shape function   and 

remote stress   . Under such field, the strength of an element   with length   is represented 

as     
 ; the associated failure probability is     

 (  )    (    
    ), and the 

corresponding survival probability is     
 (  )        

 (  ) . 
 

2.2 Fibre bundle geometry and shear-lag boundary 

Figure 1a shows a set of hierarchical fibre bundles; these are formed by pairing individual 

fibres (level-   ) into a level-    bundle, and then sequentially grouping two level-    bundles 

into one level-      bundle. The number of fibres in a level-    bundle is thus      . 
 

 

 

 
a) Bundle hierarchy.  b) Shear-lag boundary. 

Figure 1. Hierarchical bundles and shear-lag boundary. 
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The fibres (superscript  ) are arranged in a quadrangular architecture, characterised by the 

fibre diameter    (associated circumference    and area   ) and volume fraction   . 
 

Consider now a level-    bundle with a broken section, embedded in a larger composite 

bundle. One can define a level-    shear-lag boundary as the surface at which shear-lag 

stresses will be transferred between the unbroken surrounding material and the broken level-

    bundle. Several configurations can be defined [2]; assuming preferential splitting along the 

fibre-matrix interface (Figure 2b), the perimeter of the shear-lag boundary is: 
 

            *(√    )    (√    )  
  

 
+  with   (

√ 

  √  
  )     (4) 

 

2.3 Survival probabilities under several loading conditions 

The WLT (Equation 1) can be generalised to non-uniform chain stresses. Consider a chain of 

length   under a linear tensile stress field (subscript  , Figure 2b): 
 

  ( )  
  

 
   ,          (5) 

 

Dividing the linearly-loaded chain into     links of individual length       , its 

survival probability    under   ( ) relates to that of a uniformly loaded chain (  ) by: 
 

     ( 
 )     
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For the particular case of a material with Weibull strength distribution, 
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] (7) 

 

Consider now a chain of length   under a linear stress concentrations field with factor   

(subscript  , Figure 2c): 
 

  ( )     
   (   )

 
   ,          (8) 

 

Using the same procedure as for the pure linear stress case, the survival probability    under 

  ( ) relates to that of a uniformly loaded chain (  ) and of a linearly loaded chain (  ) by: 
 

     ( 
 )  {
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       (    )       ( 
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 (9) 

 

 

 

 

 

 
a) Uniform loading.  b) Pure linear loading.  c) Linear stress concentrations. 

Figure 2. Stress fields analysed through a generalised weakest link theory. 
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For the particular case of a material with Weibull strength distribution, 
 

  ( 
 )     [    (

 

  
)
 

] with    
      

(   )  (   )
 (10) 

 

2.4 Hierarchical law for bundle failure 

Consider a level-    bundle of length    (composed by two embedded level-    fibres) under 

the remote stress   , and assume that fibre   is failed at     (Figure). Following a 

perfectly-plastic shear-lag model (with strength     and shear-lag perimeter from Equation 4), 

the level-    effective recovery length (subscript  ) – within which fibre   linearly recovers 

the remote stresses, and fibre   undergoes linear stress concentrations (with    ) – is: 
 

  
   

(  )    
     

        

    with        for       (11) 

 

Bundle failure requires that both fibres   and   break in nearby locations, so that the shear-

lag boundary yields completely between breaks (Figure 4b). Therefore, once fibre   fails, the 

level-    control length – within which a break in fibre   leads to bundle failure – is: 
 

  
   (  )      

   (  ) (12) 

 

The control region is partitioned into 4 fibre segments (  ,   ,    and   ) of equal length   
   

 

(Figure 4c). It is assumed that fibre strength under uniform stresses follows a Weibull distribution 

with parameters   and   
  at   , and survival probability     

   
. This is used to calculate fibre-

segment survival probabilities under uniform stresses (yielding     
   

 through Equation 1) and 

linear stress concentration (yielding     
   

 through Equation 9, and     
   

 through Equation 1) . 
 

 

a) Failure of fibre  : definition of fibre segments and the effective recovery (  ) and control (  ) lengths. 

 

b) Stress fields during bundle failure and definition of critical distance between fibre breaks:  

the bundle fails only if fibre   breaks at a distance smaller than      from the break in fibre  . 

Figure 3. Stress fields and length scales in a level-    fibre bundle. 
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Considering that  

(i) the bundle (length   ) is represented by a chain of independent control regions of length   ; 
(ii) within each control region, each fibre can break only once; 

the bundle survival probability can be calculated as [2]: 
 

    
   (  )  (    

   (  ))
 

   *  (    
   (  ))

 

+      
   (  )      

   (  ) (13) 

 

Physically, Equation 13 states that the bundle survives either if all its 4 segments survive, or if 

the weakest fibre fails and the strongest one survives the resulting stress field. Assuming a 

self-similar hierarchical failure process, Equation 13 can be extrapolated to any bundle level, 

thus relating the survival probability of a level-    bundle within its effective recovery length 

(defined as in Equation 11, with        ) to that of a       bundle within its control length 

(defined as in Equation 12, with          ). 
 

2.5 Asymptotic limits and numerical implementation 

For    , bundle strength distribution are non-Weibull, so     
   (  ) must be computed using 

Equation 9. This requires calculating     
     

(    ) and, consequently,     
   

(     ), which 

becomes intractable as bundle level increases. Opportunely, it can be demonstrated [2] that, if 

     (valid for most technical fibres), Equation 13 (defined at any bundle level) tends 

asymptotically to the WLT for large stresses, and therefore: 
 

    
   (  )  

     
→        * (

  

 
 

   
    

)

 

+     *    
   (  )+

     
→          *    

   (  )+ ,   if      (14) 

 

An overview of the numerical implementation of the present model, which makes use of the 

asymptotes identified in Equation 14, is shown in Figure 4 [2]. Using array programming (e.g. 

MATLAB) greatly simplifies the implementation and reduces running time. 
 

3 Model results and validation 

Figures 5 and 6 compare the results obtained by the analytical model to experimental data 

from the literature [6-8]. The materials considered are described in Tables 1 and 2; raw fibre 

and matrix properties were used as model inputs, unless stated otherwise. 
 

Figure 5 shows the calculated strength probability map for bundles of the same material 

(referenced as     [6]) but different filament counts; the full set of converged strength 

distributions was obtained in less than 1 second with an Intel® Core™ 2 Quad CPU @ 2.50 

GHz. The model predicts an initial strengthening throughout bundle hierarchy, after which 

strength decreases; scatter is monotonically reduced with increasing bundle sizes. 
 

Figure 6 presents strength distributions of several micro-composites (referenced as    ,    , 

    and     [7-8]) combining distinct carbon fibres, epoxy matrices and geometries. The 

model reproduces the different slopes and locations of the four experimental data sets, as well 

as the curvature of micro-bundle strength distributions plotted in Weibull coordinates.  
 

Comparing the predictions from the present model against those of Newman and Gabrielov 

(Equation 3 [10]), it is shown that considering the presence of the matrix in the former 

substantially increases the mean value and reduces the variability of bundle strengths. The 

effect of the matrix is more pronounced as it shear strength increases (see Figure 6, where 

resin type   is significantly stronger than resin type  ). 



ECCM15 - 15
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

6 

 

 

Figure 4. Numerical implementation of the bundle strength model. 

 
4 Discussion and conclusions 

An analytical model for size effects on the longitudinal tensile strength of FRP bundles was 

developed, implemented and validated. The model is based on the stochastic analysis of the 

failure process in hierarchical bundles, considering Weibull fibres and a simplified shear-lag 

model to represent matrix effects. 
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Composite 

reference 

Fibre  

reference 
   

Matrix 

reference 
    (   )    ( ) Reference 

                        [6] 

                  [7] 

                  [7] 

                  [8] 

                  [8] 

Table 1. Description of composites used for model validation. 

 

Fibre 

reference 

Fibre  

type 
   (  )   

  (  )     
  (   ) Reference 

  T800                   [6] 

  AS4                   [7] 

  IM6                   [8] 

Table 2. Carbon-fibre data for model validation. 

 

 

 

 

Figure 5. Size effect on bundle strength (    material): experimental bundle strengths (data points [6]), present 

model’s probability map (with mean strength highlighted), and Newman and Gabrielov’s [10] mean strength 

prediction (dashed line in Figure a). Model predictions assume             . Both measurements and 

predictions were obtained for       long bundles. 

 

 

 

 
a) AS4 fibre type (considering  

     ,   
          at         .). 

 b) IM7 fibre type (considering  

     ,   
          at         .). 

Figure 6. Strength distributions (Weibull plots) for micro-composites: experimental results (data points [7-8]), 

visually fitted single-fibre distribution for model input (thick lines), present model predictions for both resin 

types (thin lines), and Newman and Gabrielov’s model [10] predition (dashed lines). Model results take into 

account free-edge effects [2]. 
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The model predicts full strength distributions and statistics for bundles of any size. The matrix 

(or interface) was shown to have a significant strengthening effect, which supports the present 

model over others not including this feature (e.g. WLT and Newman and Gabrielov’s [10]). 

The numerical implementation scheme based based on asymptotic limits resulted into 

extremely short running times (less than 1 second), thus enabling its application for detailed 

parametric studies [2] and Monte-Carlo analyses. 

 

The model was validated at the micro and macro scales, showing a remarkable agreement 

with measured bundle strengths in a large range of scales. A more detailed analysis [2] reveals 

that other experimentally observed features – e.g. the quasi-brittle nature of composites and 

the fair agreement of large-scale size effects with the WLT – are captured as well. 

 

Predictive models for size effects in composite materials are paramount for scaling small-

coupon experimental results to the design of large structures. Moreover, the present work 

provides insight on the longitudinal tensile failure process [2]. The model’s ability to compute 

strength distributions for small bundles (rather than only for asymptotically large ones) makes 

it particularly suitable for state-of-the-art multiscale discontinuous composites [12-13]. 

Further developments and applications include predicting the shape of fracture surfaces and 

the corresponding fracture toughness for FRPs under longitudinal tensile failure. 
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