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Abstract  
FE modelling of a cracked four points bending specimen is carried out assuming that the 
specimen was fabricated from ATZ/AMZ ceramic laminate. The multilayer consists of nine 
alternating layers of different thickness, while the total thickness of the laminate body is kept 
constant. All the layers made of the same material, ATZ (alumina with 5% tetragonal 
zirconia), or AMZ (alumina with 30% monoclinic zirconia), respectively have the same 
thickness. Matched asymptotic procedure is used to derive the change of potential energy due 
to the perturbation caused by a branched crack extension of the total length ap or a straight 
penetrating crack extension of length ap. Numerical simulations are compared with 
experimental observations. 

 
 

1 Introduction  
It is now well recognized that a design of layered ceramic composites provides a promising 
way for to enhance the strength reliability of ceramic component as well as to improve their 
fracture toughness by e.g. crack deflection or crack bifurcation. Moreover, expansion 
coefficients between different layers inevitably generate thermal residual stresses during 
subsequent cooling of layered ceramics with strong interfaces. Compressive residual stresses 
significantly contribute to toughening effect and resulting R-curve behaviour. The elastic 
mismatch of the layers induces an additional crack driving force term. The propagation of a 
crack in a direction orthogonal to the laminate planes can be promoted (anti-shielding) or 
retarded (shielding) by the different elastic properties.  
 
The apparent R-curve behaviour is usually studied assuming straight crack propagation 
perpendicularly across layer interfaces. Nevertheless, the propagation of the crack through the 
layers may occur with an angle different from straight propagation [1],[2].The compressive 
stress ensures that crack growth leading to failure in the laminar system is mediated by 
threshold strength, but, in some cases, it also leads to bifurcation of the propagating crack. 
Unfortunately, none of the theories regarding the directional growth of a crack in a brittle 
material such as deviation to maximize the crack tip energy release rate, deviation from the 



ECCM15 - 15TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

2 
 

established path when there is a positive T-stress, and cracks that choose the path that gives a 
zero value of the Mode II stress intensity factor is in agreement with the observed behaviour 
in the layered composites. For that reasons the problem is revisited using the concept of Finite 
fracture mechanics (FFM) [3]. The criterion used in this method can be stated as follows: 
failure will occur if there is sufficient energy available to allow a finite amount of crack 
growth denoted as ap. The value of ap is assumed to be a material constant.  
 
2 Experimental  
The mechanical behaviour of a layered ceramic composed of thin layers of Al2O3 with 30% 
monoclinic ZrO2 (referred to as AMZ layers), sandwiched between thicker layers of Al2O3 

with 5% tetragonal ZrO2 (ATZ layers) was tested under the four–point bending. The volume 
ratio between the AMZ and ATZ material, i.e. VAMZ/VATZ, was ca. 1/6. The properties of both 
materials were determined in monolithic samples [4] and are listed in Table 1.  
 

Material 
E 

[GPa] 
ν 
[-] 

α x106 

[K -1] 
σf 

[MPa] 
KIc 

[MPa.m1/2] 
Gc 

[J/m2] 

ATZ 390±10 0.22 9.8±0.2 422±30 3.2±0.1 25±2 
AMZ 280±10 0.22 8±0.2 90±20 2.6±0.1 23±2 

Table 1. Material properties of the laminate components 
 
In order to investigate the crack propagation in the laminate, a sharp notch of depth 300µm 
and tip radius of ca. 25 µm, was introduced in the first ATZ layer following the standard 
SEVNB procedure according to ISO 23146. Due to the tensile residual stresses in the first 
layer a local stress intensity factor at the crack tip overcomes the fracture toughness KIc of the 
ATZ layer during the notching process. Thus, a crack between the notch and the first 
ATZ/AMZ interface originated without any additional mechanical load (see close-up in 
Fig. 1a). This was the initial state of the specimen (i.e. crack terminating at the first interface).  
 

 

 

Figure 1. a) Test configuration of the four-point bend experiment on a notched specimen and b) load-
displacement curve recorded during testing. 

 
To assess the crack propagation through the laminate, the notched specimen was loaded in 
four–point bending (inner and outer spans: 20 mm and 40 mm respectively) at a constant 
displacement rate of 0.5 mm/min using a universal testing machine (Zwick Z010, 
Switzerland). The testing jig is represented in Fig. 1a. The corresponding load–displacement 
curve is shown in Fig. 1b. The first region of the curve (up to 40 N) is associated with the 
alignment of the rollers during the test. Above 50 N up to 215 N a linear behaviour can be 
observed: the crack is arrested at the interface until the critical loading force reaches 
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approximately 220 N. Then a decrease in load can be appreciated, which corresponds to the 
propagation of the crack through the compressive layer. At this point a sudden crack 
bifurcation occurs and propagation of both cracks branches proceeds towards the next 
interface. The propagation angle of the bifurcated crack is shown in Fig.2. 

 

 

Figure 2. Crack path in the compressive layer of specimen #1. Picture taken after polishing ca. 
250µm from the lateral face of the laminate. Volume ratio of the materials is VAMZ / VATZ = 1/6. 

 
3 Theoretical model of crack propagation in ceramic laminates 
2D FEM model of a laminate was created, see Fig. 3. In contrast with the experiment, no 
notch was modelled – only a straight crack which is a sufficient simplification of the problem. 
The total model height is 4.03 mm and it corresponds to the real specimen height. The width 
of the 2D model was considered as unit together with element plane strain condition. The 
applied loading force F in FEM calculations is then always related to this unit width, i.e. in 
comparison with the experimental data in Fig.1b, is multiplied by factor 1/B. In the first part 
of the computational analysis, the apparent R-curve of a laminate with a given residual 

 
 

Figure 3. Scheme of a laminate used for the calculations. 
 
stress profile was calculated assuming a straight crack propagation. The equilibrium condition 
at the crack tip was considered, i.e. crack propagation is possible if the stress intensity at the 
crack tip, KItip for the crack length a equals or exceeds the intrinsic material toughness KIc. 
 

( ) ( ) ( ) ( ),  .Itip Ic Itip Iappl IresK a K K a K a K a= = +     (1) 
 
Thus, solving Eq .(1) for Kappl(a), the crack propagation criterion is fulfilled when 
 

( ) ( ) ( )Iappl Ic Ires IRK a K K a K a= − = ,     (2) 
 
where KIappl is the applied stress intensity, KIres is the stress intensity contribution from the 
residual stresses and KIR(a) can be understood as the apparent toughness. The displacement-
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matching approach was used to the calculation of the stress intensity factor. The results were 
obtained with quadrilateral elements collapsed to triangular quarter-point elements. All the 
layers made of the same material (ATZ or AMZ, respectively) have the same thickness, so the 
laminate is well defined by the thicknesses tATZ and tAMZ, or the specimen height WS and the 
volume ratio λ = tAMZ/tATZ. It is apparent from the Table 1 that the AMZ layers are under 
compression since their thermal expansion coefficient is minor than that of the ATZ layers 
which are under tension. The crack face displacement data corresponding to the residual 
stresses were used for the calculation of the shielding stress intensity factor KIres. The apparent 
fracture toughness KIR(a)≤KIappl was found by summation of the intrinsic material toughness 
KIc and the shielding stress intensity factor KIres. Critical value of the loading force was 
obtained by dividing the value of the applied stress intensity factor KIappl from Eq. (2) and the 
value of the stress intensity factor induced by unit force. 
 
In the second part of the analysis the crack transition across an interface followed by crack 
bifurcation or deflection was modelled. An analytical description of the stress field in the 
vicinity of the crack tip terminating at the interface of two dissimilar materials is essential. 
Stress field description comprises a calculation of the singularity exponent, determination of 
the stress and displacement field distribution in the tip vicinity and calculation of the 
Generalized Stress Intensity Factors (GSIF) as well as the T-stress [6]. For the calculations of 
the Stress Intensity Factors, the two state integral method based on Betti´s reciprocal theorem 
was employed [6]. 

The singular stress field and displacement field for general stress concentrator are given by 
the first two terms of the asymptotic expansion: 

( ) ( )
( ) ( )

1 2

1 2

1 1
1 1 2 2

0
1 1 2 2

,  

 . . ,

ij ij ijH r f H r f

H r H r

− −= ⋅ ⋅ + ⋅ ⋅

= ⋅ + ⋅U u u

δ δ

δ δ

σ θ θ

θ θ
    (3) 

where H1 and H2 are generalized stress intensity factors (GSIF) and δ1, δ2 are the 
corresponding singularity exponents (δ1<δ2) – see [5]. The functions fij and ui, together with 
the mentioned singularity exponents, are calculated using a method based on the complex 
potentials. In some particular cases, H1 is negligible and makes no contribution (e.g. case of a 
crack perpendicular to the interface under pure mode I of loading). Since the Energy Release 
Rate (ERR) for the crack terminating at the interface of two different materials is, for 
infinitesimally small crack increment, zero or infinite (depending on the singularity type), the 
classical Griffith approach cannot be applied. To bypass this problem, a theory of Finite 
Fracture Mechanics (FFM) was applied [3]. Infinitesimal crack increment was replaced by a 
finite increment and for this increment a change of the potential energy was calculated. The 
small perturbation parameter ε is defined as ε = ap/WS << 1, where WS is the characteristic size 
of the specimen (e.g. specimen height). A second scale to the problem can be introduced, 
represented by the scaled-up coordinates (y1, y2) = (x1 / ε, x2 / ε), which provides a zoomed-in 
view into the region surrounding the crack, see Fig. 4. The xi are coordinates at the crack tip 
but in the non-zoomed state, i.e. in case of the real specimen with adjacent interfaces [7]. In 
the zoomed coordinates, yi, the influence of the adjacent laminate interfaces is not considered. 
In order to predict the mode of the further crack propagation (single or double crack 
penetration) and further propagation direction, the change of the potential energy 

paδΠ or 

more precisely the so-called additional energy ∆W, released by the fracture process has to be 
calculated, as given by [8]: 
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Figure 4. Scheme of a) single crack deflection and b) crack bifurcation (branching) at the interface between 
materials M2 and M1. A local Coordinate System is defined in the inner domain, where the crack extension 

length is given as ap = ab/2 + ab/2. 

 
( 1) .

p

M
a c pW G a∆ δΠ= −= −= −= −      (4) 

 
Gc

(M1) is the critical energy release rate of material M1, which may be determined 
experimentally (see Table 1). The term 

paδΠ  expresses the change in the potential energy 

corresponding to a certain initial crack length increment, ap. Calculation of ∆W was 
performed for several crack increment lengths in all possible crack propagation directions. 
Then a direction (and type of propagation) was chosen such that the additional energy ∆W 
reached a maximal value. The change of the potential energy 

paδΠ  considering both the 

thermal and flexural sources of the stress was calculated by integration of the energy release 
rate along the crack increment as given by: 
 

(((( ))))
(((( ))))

(((( ))))

0 0 2
(1) (2)

( ) 21
0 0

... ,   0 for 0 and 1
p

p

a

a p b S

G
G da W G G d

G

ε

δΠ ε ε δ= = + + → → <= = + + → → <= = + + → → <= = + + → → <∫ ∫∫ ∫∫ ∫∫ ∫   (5) 

 
where WS is the laminate height and G is the energy release rate. It is worth mentioning that 
there are two sources of stress, i.e. mechanical (m) and residual (r) which, separately applied, 
give the crack extension forces Gm and Gr. Under combined loading (flexural and thermal) the 
first term of the total crack extension force is given by: 

 

( )

( ) ( )( ) ( )

1 1 1 2 1 2

2 2

2 2 1 1(1) 21 1 2
1 1 ( ) 1 2

2 2 122
1 ( ) 2 ( ) 2 2 2 ( )

2

2 2

2
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d
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S S
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W W
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− + + −

−

+= + ⋅

′ ′⋅ + ⋅Ψ + ≥

δ δ δ δ δ

δ δ

δ δ δϕ ε ε

δϕ ϕ ϕ ε
.     (6) 

 
The second term of the crack extension force due to the combined loading is for the case of 
the crack bifurcation given by 
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where (((( ))))1M
resσ  stands for residual stress. For the case of the single crack deflection, G(2) adopts 

the same form as Eq. (7), where only one integral (from 0 to 1 - for one branch) is considered 
within the parentheses. Note that GSIF or the T-stress is generally the sum of two 
contributions: 
 

1 1 1 2 2 2
m r m r m rH H H H H H T T T; ;= + = + = += + = + = += + = + = += + = + = + ,   (8) 

 
where Hi

m is due to pure flexural loading and Hi
r is due to pure thermal loading respectively. 

These parameters characterize the stress state in the crack tip vicinity. Eqs. (6) and (7) 
simplify significantly when some of the GSIF (H1 or H2) is zero (e.g. the case of the crack 
perpendicular to the interface). The factors Ki p(b) (ϕp) and the opening of the crack extension 

( )
12y y′ ′V , ( )

22y y′ ′V , etc., are calculated by means of FEM on the inner domain once for all, 

since they depend only on the local geometry and material properties – for details see [5],[7]. 
 
4 Results 
The calculated apparent fracture toughness is plotted in Fig. 5, as a function of the crack 
length a. For comparison, results obtained using the classical weight function concept 
originally developed for homogeneous samples are included. In this concept, the stress 
intensity factor is calculated considering an inhomogeneous distribution of the residual 
stresses in a homogeneous body with the elastic modulus of the first layer. Observe that the 
elastic mismatch of the layers is not taken into account by the weight function method. As 
already observed in previous works, the apparent toughness increases in the layers with 
compressive stress with increasing crack length, and it decreases in the layers with tensile 
stress as the crack continues to grow. KIR reaches its maximum or minimum values as the 
crack approaches the interface with a next layer of an opposite stress sign. The R-curve has to 
be considered as an effective (or apparent) property: for certain crack lengths the intrinsic 
positive toughness of the material is overcome by the effect of the tensile residual stresses. 
This means that cracks with this length will propagate spontaneously without addition of any 
external load. For example, the crack reaching the AMZ layer is initially influenced by the 
tensile residual stress in the fractured ATZ layer, hence KIR is lower than the intrinsic 
toughness of the material. As the crack grows, KIR increases above the intrinsic toughness due 
to the growing influence of the compressive residual stresses in the AMZ layer. Nevertheless, 
calculations revealed that the corresponding loading force needed for crack to grow in AMZ 
layer is systematically higher than the loading force recorded experimentally, see Fig. 1b. The 
cause of this behaviour is that the straight crack propagation is not a favoured mode of 
fracture and, instead, crack deflects or bifurcates in the compressive AMZ layer. 
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Figure 5. Apparent toughness as a function of crack length a for several volume ratios λ 
 

 
The crack path was predicted using the model described in the previous section. A 
competition between single crack penetration and crack bifurcation in case of the laminate 
defined in the previous section was investigated. Using Eqs. (5), (6) and (7) the change of the 
potential energy for several possible propagation directions was calculated and is represented 
in Fig. 6. Both, length of the crack extension ap and GSIF H2

m were varied in a wide range of 
values. The crack extension ap was varied in order to be always smaller than the radius of the 
domain where the singular stress field (3) prevails.  

 
Figure 6. Variation of the change of the potential energy δΠ with the angle of the crack extension for a) single 
crack deflection and b) crack bifurcation. Crack extension length ap=25µm, H2

r=0.39 MPa.m1-δ2 and H2
m=1.1 

MPa.m1-δ2 (flexure load 220N). 
 
The obtained numerical results showed that both crack bifurcation or crack deflection are 
preferred modes of fracture with respect to straight crack propagation. The angle of 
deflection/bifurcation, ϕp, was predicted to be in the range 20° – 30° which is in a good 
agreement with experimental observations. However, contrary to experimental data, the crack 
propagation was predicted even for the loading force about of 10 N, i.e. much lower value 
then the threshold value of 220 N found experimentally, see Fig.1b. This discrepancy made us 
re-examine the real crack path. By inspection of the fractographic observations in Fig. 2 it 
could be concluded that crack does not bifurcate and/or deflect just at the interface but at a 
distance ∆a ≅ 25 µm behind the interface. This is due to the energy accumulated in the system 
during the unstable crack propagation (i.e. in the ATZ layer which is subjected to tensile 
residual stress) before the crack reaches the interface. The stress field around the edge of the 
penetrating crack is square-root singular with the regular stress intensity factor KI. It is worth 
mentioning that the radius of the dominance domain of the square-root singular field is only 
few microns as detailed numerical calculations revealed. Outside this domain the singular 

10 2
,max 9.98 10 MPa.mp

−δΠ = ⋅ 10 2
,max 10.61 10 MPa.mb

−δΠ = ⋅
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stress field (3) still prevails. However, the intensity of the singular stress field (3) caused by 
pure thermal loading, H2

r, is significantly reduced. This is associated with the sharp change of 
residual stress between ATZ and AMZ layer. To find the reduced GSIF H2

r associated with 
the crack increment ∆a the ERR for a straight crack increment calculated using a simplified 
version of the expression in Eq. (6) for pure thermal loading was compared with the regular 
ERR calculated using standard fracture mechanics procedures (for pure thermal stresses) as: 
 

( ) ( ) ( ) ( )2 2

2
2 22 2 12

2 2

12
0

2
r r

S p p I
S AMZ

W kH K K
W E

−
−

= =δ δ
νδ ϕ η ,   (9) 

 
where η=∆a/WS and k is a dimensionless coefficient which describes the reduction of GSIF 
H2

r. The coefficient k can be found from the numerical calculations of KI
r, specifically k ≅ 

0.22. If the reduction of GSIF H2
r is applied in the crack deflection/branching analysis, a very 

good agreement with experimental data is obtained. Fig. 6 shows that the crack 
branches/deflects at the angle ϕp ≅22° for the loading force F ≅220 N when the additional 
energy ∆W (see Eq. (4)) is starting to be greater than zero. It can be also inferred from Fig. 6 
that crack bifurcation is preferred to crack deflection, because the change of the potential 
energy δΠ during crack bifurcation is (slightly) greater than that corresponding to single crack 
deflection. The key feature in the design is the high residual compressive stress in the AMZ 
layer, which is present in laminate configurations with relative high material volume ratio (i.e. 
VATZ/VAMZ ≥ 5). In laminate configurations with lower volume ratios the residual stresses are 
lower and the inclined single penetration of the crack might be preferred to crack bifurcation. 
 
4. Conclusions 
A semi-analytical model for the prediction of the crack propagating through the ceramic 
laminate designed with high compressive residual stresses was presented. A crack bifurcation 
effect (simultaneous penetration in two directions at a given angle) was discussed and its 
prediction was compared with experimental observations. The proposed fracture criterion, 
based on the Finite Fracture Mechanics, can predict both the type and also the angle of the 
further crack propagation. The crack bifurcation observed in experiments can be explained 
with the proposed model. The key feature in the design is the high residual compressive stress 
in the AMZ layer, which is present in laminate configurations with relative low volume ratio 
between the AMZ and ATZ material (i.e. tAMZ/tATZ ≤ 1/5). In laminate configurations with 
higher volume ratios the residual stresses are lower and the inclined single penetration of the 
crack is preferred to the crack bifurcation. 
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