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Abstract 
Numerical modeling of dry woven fabrics at meso level has become a powerful tool for 

gaining more insight into the multi-scale behavior of these materials. However, finding 

correct material properties for meso-level yarns is still a challenge. The current practice is to 

use inverse identification techniques in individual deformation modes via robust optimization 

procedures. Nonetheless, the problem of entrapment of numerical procedures into local 

minima, on one hand, and the inconsistency of final nominal sets of yarn parameters under 

different deformation modes, on the other hand, are among questions that need to be 

addressed. The inverse identification case study employed in this work on a glass plain weave 

is intended to demonstrate the above need. Subsequently, a multi-objective inverse 

identification scheme is recommended. 

 

 

1 Introduction 
1.1 Woven fabrics in meso level 

Woven fabric composites have attracted considerable attention in the past few decades. This 

is not only due to the common advantage of composites such as superior mechanical 

performance, but also because of their ease of formability [1]. Woven fabrics are fabricated 

by interlacing fibrous yarns in 2D patterns. Depending on the interlacing pattern, different 

types of fabrics can be produced [2] (e.g., plain, twill, satin weave, etc.). The fact that fabrics 

are made of yarns consists of bundles of fibers indicate the multi-scale nature of these 

materials. Subsequently, woven fabrics have been studied in three different material levels 

(length scales) known as micro, meso, and macro level/scale. Each level has different 

representative elements and characteristic lengths [3]. Micro-level is characterized by fibers in 

a µm length scale. Yarns made of hundreds/thousands fibers are the representative elements 

of the meso-level material system, with the length scale being in the order of mm. Finally, 

interlaced and interwoven yarns constitute the macro-level fabric with a length scale of m/cm. 

In reality, woven fabrics are heterogeneous media, but due to the complexity of 

analytical/numerical simulations, in each level the material representative element is often 

assumed to be homogeneous. Nevertheless, to characterize a fabric behavior accurately, a link 

between different material levels is needed which is often done via homogenization 

techniques [4].  
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Studying meso-level behavior of fabrics can be useful for a robust design of composite 

products at macro-level [5]. Meso-level modeling provides designers with more insight 

towards phenomena such as stress distribution  and damage initiation in the yarns during 

deformation [3], permeability of fabrics during resin transfer molding [6] and other similar 

phenomena that cannot be addressed in a merely macro-level simulation. However, the 

problem of finding the yarn constitutive material properties at the meso level is one of the 

major challenges. Two most prevailed techniques that are widely used for meso-level 

simulations of fabrics include the application of homogenized material properties from micro-

level unit cells [4], and the use of specific hypo-elastic material behaviors based on fibrous 

nature of yarns [7]. The former is essentially developed for impregnated yarns, and the latter 

has proven to be more suitable for dry fabrics where there is no material occupying the gaps 

between fibers in the yarn [8]. For a dry yarn, in turn, defining a material constitutive model 

requires determining the model’s parameters via experimental data. Due to the changes in 

shape, contraction and damage of yarns during weaving, it is not recommended to extract 

these parameters from a single yarn [9]. Moreover, removing single yarns from a fabric and 

running tests on them has the drawback of neglecting the effect from interactions between 

yarns in the woven form. Alternatively, an inverse identification technique can be a powerful 

tool for extracting the effective material properties of fibrous yarns from experimental data 

collected on the macro-level fabrics.  

Although there have been notable efforts in the characterization of yarns using inverse 

identification techniques [8–10], two main gaps remain unaddressed. First, the identifications 

are normally pursued under a single mode of deformation (i.e., axial tension or trellis shear). 

Generally, woven fabrics may not be under the effect of a single deformation mode in real 

forming applications. Some recent studies emphasized on the existence of interactions 

between individual deformation modes in fabric forming and structural response [11], [12]. 

Second, only one set of nominal material parameters is obtained for each individual study, 

without any argument on the sensitivity and possible inconsistency of parameters within and 

between deformation modes. A recent study by Komeili and Milani [13] highlighted the effect 

of potential meso-level material uncertainties on the sensitivity of response of woven fabrics 

in each mode. The main goal of the present article, using an illustrative example on a glass 

plain weave, is to demonstrate the potential application of a multi-objective inverse 

identification methodology that may be suitable for finding material properties of yarns under 

general loading conditions (combined shear and tension). This includes implementing macro-

level tests in different mode along with a multi-objective optimization technique.  

2 Case study: Inverse identification process 
2.1 Experiments 

The primary input required for an inverse identification process is the reaction force (stress) 

vs. displacement (strain) data collected from experimental measurements on a fabric sample. 

For this purpose, three sets of experiments including uni-axial, bi-axial and shear frame tests 

were ran on a fabric sample cut from an identical role. The fabric is made of E-Glass fibrous 

yarns that are interlaced with a balanced plain weave pattern. The basic unit cell for the fabric 

and its nominal dimensions are depicted in Figure 1, where S=5.14 mm, w=4.22 mm and 

h=0.25 mm. Measured data points under the above tests can also be seen in Figure 2.  

2.2 Meso-level numerical simulation 

The meso-level unit cell for the selected woven fabric was generated using TexGen [14]. The 

yarn material constitutive behavior is based on the models developed in [7], which were 

further adapted to run with implicit integrator of the Abaqus finite element package as 
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described by Komeili and Milani [15], [16]. The material tangential stiffness in a frame along 

fibers in the yarn is given by: 

 
Figure 1: (a) The selected plain woven fabric; (b) fabric unit cell 
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where 
11E  is the axial stiffness that is one of the parameters to be determined via inverse 

identification. It should be mentioned that the magnitude of 
11E  is very large for the axial 

tension while it is very low/negligible in compression, due to the buckling of extremely thin 

fibers. For the stability of numerical simulations (i.e., for imposing a nonzero stiffness state), 

the following relation was used between the compressive and tensile longitudinal stiffness of 

yarns: 

 ( )
( )11

11
20

tension

compression

E
E =   (2) 

In addition, the following formula was implemented for estimating the lateral yarn stiffness: 

0 11 5.0 MPasp

ii iiE A e E
ε

ε ε
−

∞
= + +   (3) 

where 
0A , p  and E

∞
 are to be determined from inverse identification, and ( )22 33 / 2sε ε ε= +  

is the spherical strain in the transverse plane of the yarn. Equation (3) was driven from 

previously suggested models for crushing of dry yarns under axial tension [10] and pure shear 

[8]. The shear stiffness is suggested to take the form of: 

( )3

11
10.0 1 10 MPa

ij
G ε= + ×   (4) 

A hypo-elastic constitutive behavior [7] was implemented into the code using a user-defined 

Fortran subroutine (UMAT). Numerical simulations were controlled with predefined 
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displacement on four coroner points of the unit cell along with the necessary periodic 

boundary conditions applied on the peripheral surfaces and edges of the cell [17].  

2.3 Multi-objective optimization 

The task of the inverse identification is to match the predictions by numerical simulations 

with the data from experiments. This is done by varying the values of material parameters 

( 11E , 0A , p and E
∞

) as optimization variables. To arrive at a quantitative measure of how 

close the simulation results are to the experimental measurements, an objective function may 

be defined as follows: 

1

sim exp
n

i

i iiF Fe x
=

= ∆−∑   (5) 

In which n is the number of points. sim

iF and exp

iF are the reaction forces in an identical state of 

deformation in the simulation and experimental curves, respectively; ix∆  is the strain 

difference in the axial modes (or shear angle in the shear mode) between two subsequent 

measurements (e.g., iF and 1iF
−

). In essence, the above formula shows an approximation of 

the area difference between the experimental and simulation curves. Ideally, the value of the 

error function should be zero for a perfect model, however, in a real case it is not possible to 

attain this goal and thus, minimizing the error function (e) is considered to be the best 

solution. Moreover, for each different loading mode there may be one relevant objective 

function. Thus, in this case the problem turns into a multi-objective optimization. In order to 

express the ensuing problem more explicitly, a total objective function can be defined to 

convert the multi-objective optimization into a single objective optimization as follows. 

j j

total

j modes j

w e
e

α∈

= ∑   (6) 

In Eq. (6), modes = {uni-axial, bi-axial, shear} are the three different loading modes that are 

studied in this case study; jw  and jα  are, respectively, the weighting factors and the scale 

factors used to put a relative emphasis on each mode (in case there is more importance of one 

mode over the others for a particular application) and to bring the scale of runs from different 

modes to the same level (in case the individual error functions have different magnitude 

orders). je  is the individual error function that is calculated from Eq. (5) for each mode. 

3 Results 
Having the data from experimental measurements (Section 2.1) and the parametric numerical 

model (Section 2.2), an iterative optimization algorithm can be employed to conduct the 

inverse identification via Eq. (5) or (6). The optimization problems were solved in Isight [18] 

using a downhill simplex method. 

3.1 Inverse identification on individual modes 

Downhill simplex method is a geometrically intuitive algorithm that can be used for structural 

optimization problems [18]. One of the main advantages of this method is that it is not 

gradient-based. Moreover, because of the low number of iterations that are needed to attain 

convergence, compared to other exploratory and stochastic techniques, the downhill simplex 

method is known to be suitable for optimization problem with high computational costs. 

Table 1 shows the results of inverse identification via Eq. (5) for each individual deformation 
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modes along with the corresponding objective function value. As mentioned earlier, the 

objective function is as an estimation of the area difference between the experimental and 

simulation curves. Figure 2 also shows the response curves via optimum sets of material 

properties in Table 1.  

Model Individual deformation modes   Multi-objective 

parameters Uni-axial Bi-axial Shear frame  case 

11E  (GPa) 9.17 13.06 4.73  10.41 

0A (kPa) 1.14 0.83 0.25  0.994 

p  19.94 27.56 25.26  26.69 

E
∞

(GPa) 10.64 20.76 18.20  24.43 

Objective function  1.14E-4 1.05E-4 0.686  0.214 

Table 1. The outcome of inverse identification for each individual mode 

 
Figure 2. Comparison of experimental measurements to the simulations using material properties obtained from 

single inverse identification on individual modes 

Although the quality of numerical predictions in each mode in Figure 2 may be acceptable, 

the parameters obtained for individual modes are quite different from each other as seen in 

Table 1; whereas ideally a given constitutive material model should posses a unique set of 

parameters for all deformation modes. Thus, the need for a multi-objective optimization rises 

for attaining meso-level yarn material parameters that can be applied to general purpose finite 

element simulations. 

3.2 Multi-objective inverse identification 

The multi-objective error function for simultaneously running inverse identification on all the 

three modes was defined in Eq. (6). The weighting factors for the modes are defined to be 

identical (the unity), in order to give them the same level of importance. For the scale factors, 

the estimated values of areas under the experimental curves were used.  Table 1 includes the 

results for the multi-objective inverse identification, and the comparison of experimental and 

simulation data can be found in Figure 3. 

 
Figure 3. Comparison of experimental measurements to the simulations using data obtained from a multi-

objective inverse identification on all three deformation modes  



ECCM15 - 15
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

6 

 

According to Figure 3, using the multi-objective optimization has led to a higher relative 

deviation from experimental points in each mode. Although the predictions are in the 

acceptable range for the tensional modes (uni-axial and bi-axial), the deviation in the shear 

mode has become substantial. Nonetheless, shear frame test has been proven to be a test that 

is highly sensitive to experimental conditions (e.g., clamps pressure) and noise sources such 

as fiber misalignment [1]. Some studies on handling uncertainties associated with such tests 

were suggested by Milani et al. [19] and can be further extended for multi-objective 

identification cases. 

4 Summary and conclusions 
Meso-level simulation of dry woven fabrics has been proved to be a powerful tool for 

predicting their behavior in macro scale as well as studying the local deformation mechanisms 

in yarns. However, finding the yarn material parameters for the meso-level is a challenging 

task, due to changes in yarns geometry and contraction during weaving as well as interaction 

of yarns during deformation. Inverse identification techniques have been widely used for this 

purpose under single deformation modes (e.g., axial tension or trellising shear). Nonetheless, 

for establishing a general purpose meso-level model that is capable of simulating fabric 

deformation under combined loading conditions, the effect from different modes should be 

studied at the same time. 

In this work, a general inverse identification scheme using experimental data collected from 

three different deformation modes (uni-axial and bi-axial tension,  and trellising shear) on the 

same fabric (glass plain weave) was considered. Optimization using the down-hill simplex 

method was utilized for minimizing the deviation of simulations from experimental 

measurements. First, an inverse identification was conducted on each individual deformation 

mode and the optimum material constants were extracted. Although the simulation curves and 

experimental measurements showed agreeable correspondence, there are notable differences 

in the values of material constants obtained for each mode. Therefore, multi-objective 

optimization has been suggested to obtain one single set of material parameters for all modes. 

Results of the multi-objective inverse identification showed that although the deviation of 

experimental results from simulation is higher in this case, they are still within an acceptable 

range under axial modes. For improving the outcome of the methodology, more exploration 

on the effect of noise in the experiments, especially for the shear mode, and including 

different weighting factors may be worthwhile for the next step of this research.  
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