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Abstract

This paper presents the development of a modaleiqh the strength associated with kink-
band formation and fibre splitting based on a #nitacture mechanics approach. The model
is derived to handle tri-axial stress states, nammehgitudinal compression combined with

in-plane shear and hydrostatic pressure. Correlasiowith experimental data from the

literature show that the physics of the problerodsectly captured.

1.Introduction

Longitudinal compressive failure of composites basn a very active field of research for
many decades because of the complexity of theréaimodes triggered, the difficulty of
obtaining detailed and reliable experimental evi#snand the high sensitivity of the
compressive strength to defects and multi-axialsstistates. Experimental investigations have
shown that three failure modes are to be expeatéohgitudinal compression, namely: fibre
kinking, fibre splitting and shear-driven fibre cprassive failure, as shown in Figure 1a, b
and c, respectively.

(a) Kink-band formation (b) Splitting (c) Compressive shear failure

Figure 1. Failure modes in longitudinal compression.

The present contribution focuses on fibre kinkingd afibre splitting which are often
considered as the most common failure modes. Hintang typically initiates in areas of
misaligned fibres. These fibres rotate under a cesgive load, and the shear stresses
induced in the matrix lead to matrix failure anskband formation. In the closeup view
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Figure 1la, microcracks in the resin are observaklled ‘m’. Some of these microcracks
have coalesced to form a split, labelled ‘c’.

Fibre splitting is also controlled by matrix faiubut is more often found under large shear
stresses combined with longitudinal compression.ti@ncontrary to kink-band formation,
fibre splitting failures do not localize and carted over large part of a component as shown
in Figure 1b.

Many models, both analytical and numerical, havenbdeveloped to predict the strength
associated with kink-band formation. Models capigrbest experimental trends commonly
assume the sequence of events described aboverandfarred as kinking theory. These
models typically neglect the bending contributidribee fibres and represent the kink-band as
a band of material with orthotropic material prdper rotated in the misaligned coordinate
system of the fibres (anglé+&). The longitudinal compressive strength is theal@ated
when yielding of the matrix in the band is reached.

More recently, Davila and Camanho in [1] proposedit@rion for fibre kinking, whereby the
stress applied on a unidirectional composite, ¢oimg a region of misaligned fibres, is
rotated in that misaligned coordinate system. Hsolved stresses are then used to evaluate
the LaRC matrix failure criterion to test for faiu This approach was developed further in
[2] to account for the nonlinear response of theposite in shear as well as to handle 3D
loading situations.

In this contribution, the formulation of an anatgi model developed in [3] for combined in-
plane shear and longitudinal compression is suns®driand an extension to handle
hydrostatic stress state is presented. The modahssd on a fracture mechanics approach
which offers a better representation of microcragkn brittle resins and contrasts to previous
models [4-7] based on a plasticity approach andenagpropriate to ductile resins. Finally,
the results of the model are compared to experiahatdta available in the literature and
discussed.

2.Model formulation
2.1.Framework
The model and criterion derived here are applicamdailure by kink-band formation and
fibre splitting for relatively high fibre volume dction, typical of high performance
composites, where longitudinal compressive failise by fibre kinking/splitting. The
experimental observations show that kink-bandatdin results from the formation of matrix
microcracks and splits in the inter-fibre regiomefefore, the present model is based on the
hypothesis that the strength associated with fidanking is reached when the strain energy
released, per unit area of crack generated betare@mdamaged state and a damaged state, is
equal to the energy required to create a unit@fresacks (fracture energy).
To calculate the strain and fracture energies, semglifications and assumptions on the
geometry, loading conditions and material resp@neenade and listed below.
More details on the derivations for the case oplame shear and longitudinal compression
are given in [3].
Simplifications

(i) The control volume (Figure 2a) chosen is a espntative element of material in the
kink-band. The model is 2D with fibres consideredé perfect cylinders of diametarand
arranged in a hexagonal pattern with a fibre voluinaetion v;. The model has a unit
thickness (in the 3-direction), and is taken frome f the symmetry planes of the fibre
arrangement.
A fibre volume fraction for the 2D equivalent modeh also be defined as
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52D — b Equation 1
T ¢f + tm

wheret, is the thickness of the matrix layer.

S(ii) Fibre bending is neglected and the fibres@residered to be incompressible.

S(iii) The deformation of the matrix due to the nma of the kink-band to the
propagation anglgis neglected.

S(iv) The matrix transmits only shear stresses. Jtear stresses are considered uniform
across the matrix layer. The fibres are assumeallpbto each other, and to remain so during
loading, as the matrix deforms predominantly inashe
Assumptions

A(i) When a nonlinear shear response of the masgrisonsidered, the nonlinearities are
assumed to be induced by damage alone.

A(ii) Crack formation between the undamaged sta)eaffl damage state (B), Figure 2a,
Is assumed to occur at constant displacement ankirtbtic energy is neglected.

A(iii) The microcracks have complex shapes and itligion, and their actual area is not
observable. Hence, it is assumed that the ardaeahtcrocracks created per unit of thickness,
for a widthw of kink-band, can be written as

awt,, Equation 2

wherel the coefficientr is an undetermined proportionality factor and If@as dimension
[mm]

A(iv) Matrix cracking is assumed to occur under gae mixed mode critical energy
release rat&c.

A(v) The hydrostatic pressure is assumed to notiaffee equilibrium of the fibre and to
only contribute to the strain energy.

A(vi) The producta.G; and the resin Young’'s and shear modsli,andG,, are function
of the hydrostatic pressure.

2.2.Equilibrium of the fibre

The strain energy stored in the control volumehitamed from the equilibrium of a fibre of
lengthw, initially misaligned at an angl&, and subjected to an axial force P, a shear f8rce
(the forces P and S are per unit width, Sgg and an hydrostatic pressugg, see Figure 2b.
Under the action of the axial and shear forceshifigostatic pressure is in equilibrium on the
fibre A(v)— the fibre rotates by an additional anglesuch that at equilibrium, the fibre is at an
angle& + 6.

PO + POy — tpnppw + Sw =0 Equation 3

The axial and shear forces acting on the fibrelmaexpressed in terms of the homogenised
applied stresses

P S

011 ~ (vaf Equation 4; Tip ~ — Equation 5
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Figure 2. (a) Assumed formation of microcracks during kinkatddormation; (b) Equilibrium of the fibre.

So that the equilibrium of the fibre finally reads

(6 +6,)
O11—3p  TTi2 = fCGL(Q)
Vr

Equation 6

with the shear stress in the matiiy, = £5 (6), andff is a generic function relating the
shear stress and the shear strain.

2.3.Strain energy and dissipated fracture energy
Using the simplificationsS(ii) and Siv), the strain energy of the model in the undaethg
state A, see Figure 2a, reduces to the strain grs¢oged in the matrix

1 1 .
Uy,=U, = 5] TmVYmdV +§f opep dV Equation 7
Vi Vm

which can be rewritten as

1
UA = Eth

0 g,°
——5 5O+ (1 -v")E Equation 8
1-vf En,

In the damaged state B, the element is considedgddamaged (the matrix does not resist
any stresses) ands = 0.

Under assumptionA(iii) and A(iv) and with Equation 2, the fracture energy giased from
state A to state B is written as

AG = awt,,G, Equation 9

2.4 Energy balance
In a general case, and with assump#i), the energy balance during crack formatiorndsea

AW — AU = AG Equation 10

whereAW is the work of the external forces. At constarspthcement, the work is zero and
the energy balance becomes

Uy = AG Equation 11

Or using equations 7 and 9
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0 0,2
——5 8.0 + (1 - v?*) 2| = 2aG, Equation 12

2.5.Linear elastic shear response of the matrix
In the case of a linear elastic matrix, with

6
T = f,(6) = Gmm Equation 13
f

The angle of rotation of the fibres is relatedhe applied stresses by using Equation 6
so that

leva + 0116,
Gm
2D

Which, replaced in Equation 12, and after simpdifions, gives

2 2D 2 2
20410 0110 1 1—-v 167 .
1,2 + 121D 01, + % -6, _TDJ‘JM 2aG, — = || =0 Equation 15

0 =

v]gn . Equation 14

3.Discussion on some patrticular forms of the model
3.1.Combined in-plane shear and hydrostatic pressure
Foroy; = 0 ando, # 0, Equation 15 becomes

> 46, (2a6, - 22 = Equation 16
T12° + G | 2aG, I =0 quation
m

The solution of this equation gives the shear steg¢dailure, in-plane shear stren@h as a
function of the hydrostatic pressure, but note th&;, E, andG,, are also function ofy,

0,> .
11, =S.(0,) = £ \/ G <2aGC — EL> Equation 17
m

3.2.Combined longitudinal compression and hydrostatespure
Takingt;, = 0 in Equation 15, we obtain

2 2
01190 — i G — ﬂ o 2“6 — E
ngD Gm m UJZD 11 c Em

2
Taking the square root and replacingGc—(;L by SL(ap)/Gm, an expression of the

=0

Equation 18

longitudinal stress at failure, longitudinal strémgs found
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X. = UIEDSL(O—P)
€71 —p2D Equation 19

——5.(0) + 6o

This equation is identical to Budiansky’'s formuld] [if we note that micromechanically
Gn/1 —v]?D corresponds to the in-plane shear modulus of thraposite and therefore
1-v£"/Gy.S.(0,) is the shear strain at failure. However, Equati®nshows how the

hydrostatic pressure affects the longitudinal caapive through the shear modulus and shear
strength of the composites.

3.3.Combined in-plane shear and longitudinal compreassio
Finally, for o, = 0, Equation 15 has for solutiom.G., En andGy, are denoted here with a
subscripito emphasize that their values is égr= 0)

oubo  (1-v") | (aG (Gm) .
Ty = — ;}DO + 7 2@ C/Gm mO 2 g, Equation 20
0

2D Wf

which becomes

T12 + 011 ((1 - ngD) + 0 )
J20G.6) VP \ (Gdo  J2(aG.Gp)o

An expression for the in-plane shear strengthusdoas

S, =+ 2(aG.Gyp)o Equation 22

3.4 How do the micromechanical parameters related yopgpbperties?

It is interesting to look in detail at Equation Which relates strength properties at the
microscale with those at the ply scale. When therdstatic pressure is zero, this equation
reduces to Equation 22 which shares similarityh equation derived in [9] for the in-situ
shear strength of a thin ply embedded in a laminate

Sis = ./8G,;.G1o/Th Equation 23

The terma, with dimension mr, is similar to the term b/in Equation 24, and accounts for
two characteristics of the microcracks: (i) a crdeksityp, and (ii)) a measure of their actual
normalised ared’, so thata = pB. The termG, in Equation 22 is in fact a mixed-mode
toughness which would correspond3g: in Equation 24 — even thou@h might be closer to
Gyc as shear cusps form in mode 1.

In many respects, Equation 22 could be seen as-situi strength of the resin between fibres.
The exact values op, S and the mixed-mode ratio are of course difficdt measure
practically but with Equation 22 they do not needé& known, as they are implicitly defined
through the shear strength of the composite.

In Equation 17, it should be noted that the neggssandition2aG, > 0,°/E,, is fulfilled in

most cases @G, andEy, will increase with increasing.

=1 Equation 21
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4.Prediction of failure envelopes
4.1.Shear and compression
Figure 3 shows a failure envelope for in-plane skkeabined with longitudinal compression.

The present model, Equation 21, is used with theena properties given in Table 1 and the
model compared to experimental data from [4]. Thedeh captures well the experimental
trend and shows that increasing initial fibore mgaent results in lowered compressive
strength.

& () S. (MPa) @ (mm) Vi (%) Gm (MPa)
2.1and 2.5 75 7 60 1100

Table 1.Material properties used for Figure 3.

T, (MPa)
80

O Jelf and Fleck (1994)

40
Analytical: §,=2.1°
S,=75MPa

Analytical: 6,=2.5°
S, =75 MPa

-1600 -1200 -800 -400 0
oy, (MPa)

Figure 3. Failure envelope for in-plane shear combined wvatigitudinal compression [4].

4.2.Hydrostatic pressure and compression
Figure 4 shows a failure envelope for in-plane slkseanbined with longitudinal compression.
The present model, Equation 19, is used with theena properties given in Table 2 and the
model is compared to experimental data publishgdllih

& () S (MPa) @ (mm) Vi (%) Gn (MPa)
1.8 59 7 60 1320

Table 2. Material properties used for Figure 4.

Furthermore, because of the lack of d&a,is assumed to be constant with the hydrostatic
pressure and the shear strength to vary lineatly ivi

S, = S0+ uo, Equation 24

The coefficienty is similar to the coefficient of friction used [R,10]. For CFRP, it is
recommended that 0.2<0.3 [10] so it was chosen here to yge= {0.25/0.3/0.35} as
representative values.

The model predicts a nonlinear increase of the itodopal compressive strength with
increasing hydrostatic pressure, which reflectsl wrperimental data. A good quantitative
agreement is also achieved for the values idcommended in [10].
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Figure 4. Longitudinal compressive strength versus hydraspessure [11].

5.Conclusions

A model to predict the strength of fibre kinkingdasplitting under combined stress state and
based on finite fracture mechanics has been pexerithe model is able to capture

experimental trends for longitudinal compressionrmbmed with in-plane shear and

hydrostatic pressure.
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