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ABSTRACT 

Ply cracking is a very important damage mode for laminated composite materials that has been the 
subject of intensive study over many years, especially cross-ply laminates. In practical applications, 
laminates are usually more complex than cross-plies, and they are subject to complex loading that 
involves both in-plane and out-of-plane deformation, in addition to residual stresses arising from thermal 
expansion mismatch effects between the plies. Based on a methodology that is able to predict ply 
cracking for: i) a multiple-ply cross-ply laminate subject to combined biaxial in-plane loading and biaxial 
bending, and ii) a general symmetric laminate subject to combined in-plane biaxial loading and in-plane 
shear loading, where thermal residual stresses can be present, this paper will attempt to combine the 
models developed for these situations so that ply cracking in general symmetric laminates subject to 
combined in-plane biaxial and out-of-plane biaxial bending can be treated. It is first assumed that 
laminates have at least one 90o ply, and that ply cracking occurs only in some or all of the 90o plies. The 
off-axis plies in the laminate, which are uncracked, are first homogenised into an orthotropic effective 
medium. The next step is to apply the homogenised properties to the 0o plies of an equivalent hybrid 
cross-ply laminate that is then subject to progressive loading involving any combination of in-plane 
biaxial loading and out-of-plane bending. The homogenisation approach is tested, for the case of uniaxial 
in-plane loading, by comparing predictions of the homogenised model with those of an existing model 
that allows for the presence of all the off-axis plies. For more complex loading states, an example will be 
given of a prediction of the progressive growth of ply cracking, and of laminate stress-strain behaviour. 
 
1. INTRODUCTION 
As many structures experience some form of bending deformation during service it is 
vital that damage formation in the presence of bending is well understood. Of particular 
relevance to the performance of structures is the prediction of the occurrence of 
microstructural damage in complex loading modes where out-of-plane bending modes 
of deformation occur in conjunction with in-plane biaxial and through-thickness 
loading. While a great deal of research has been devoted to the case of ply cracking in 
cross-ply laminates subject only to in-plane deformations, the practically important case 
of out-of-plane bending has received much less attention (e.g. [1-8]). One objective of 
this paper is to summarise the important results that have been derived using an energy 
balance method for predicting the conditions for the steady state growth of ply cracks in 
a cross-ply laminate subject to bending and thermal residual stresses. A second 
objective is to indicate how the methodology for ply crack formation can be developed 
without a detailed analysis of the stress transfer that is in fact needed only to estimate 
the thermoelastic constants of a damaged laminate. The anticlastic bending typical of 
deformed laminates is taken into consideration as are thermal residual stresses.  
 
2.  PREDICTING PLY CRACKING DURING BEND DEFORMATION 

2.1  Geometry and loading conditions 
A general balanced laminate, that might not be symmetric, of length 2L, width 2W and 
total thickness 2h consisting of perfectly bonded anisotropic layers is considered within 
a Cartesian coordinate system. The x-direction is taken as the through-thickness 
direction of the laminate, the y-direction is taken as the axial (longitudinal) direction 
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and the z-direction as the in-plane transverse direction. The origin is located on one of 
the laminate faces.  In order to represent the applied loading that leads to biaxial 
bending of the laminate for the axial and transverse directions, it is assumed that the 
edge boundary conditions for the displacement components v and w are of the form 

 
( )
( )

( )
( )

T T

T T

ˆ W x on z WˆL x on y L
v w

ˆL x on y L ˆW x on z W .

� ε + ε =ε + ε =�� �= � �
− ε + ε = − − ε + ε = −� �� �

=            (1) 

For infinitesimal deformations, the radii of curvatures of the surface x 0=  of the 
deformed laminate are given by 1 ˆR 1/= ε  and 2 TˆR 1/= ε , so that ε̂  and Tε̂  are 

respectively the curvatures of the surface x 0=  of the deformed laminate in the axial 
and transverse directions. The faces of the laminate are assumed to be subject to a 
uniform applied tensile traction so that 

xx t on x 0, 2hσ σ == .                                             (2) 
In most practical applications, the applied face tractions would be an applied pressure so 
that tσ  is negative. If an exact linear elastic analysis of the laminate subject to the 
boundary conditions (1) and (2) is undertaken, then the applied tractions induced on the 
laminate edges and displacements induced on the laminate faces will be non-uniform 
and complex in nature. To deal with this situation an averaging procedure is introduced. 
 
The bending moments per unit area of loading cross-section for the axial and transverse 
directions are defined respectively by 

( ) ( )W 2h

yyW 0

1
M x h x,L,z dx dz

4hW −
= − σ� � ,                               (3) 

( ) ( )L 2h

T zzL 0

1
M x h x,y,W dx dy

4hL −
= − σ� � .                               (4) 

The moments are taken about the mid-plane of the laminate that might not correspond 
to the neutral axis if the laminate is unsymmetrical and/or damaged in the region of 
axial tension. The corresponding effective applied axial and transverse stresses are 
defined respectively by 

( )W 2h

yyW 0

1
= x,L,z dx dz

4hW −
σ σ� � ,          ( )L 2h

zzL 0

1
= x,y,W dx dy

4hLΤ −
σ σ� � .       (5) 

The corresponding averaged applied in-plane axial and transverse strains ε�  and Tε�  are 
defined by 

( ) ( )

( ) ( )

W 2h
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1
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8hLW
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w x,y,W w x,y, W dx dy,
8hLW

−

−
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 ��
�
�ε = − −� �	 
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�
                   (6) 

and the averaged through-thickness strain tε  for the laminate is defined by 

( ) ( )W L

t W L

1
= u 2h,y,z u 0,y,z dy dz

8hLW − −
ε −� �	 
� � ,                            (7) 

where u is the x-component of the displacement vector. Substituting the edge boundary 
conditions (1) into (6) and performing the integrations leads to 

ˆhε = ε + ε� ,          T T Tˆhε = ε + ε� .                                         (8) 
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2.2  Stress-strain relations 
In the absence of in-plane shear deformation it is known [2, 3, 6-8] that the effective 
stress-strain relations, based on the above definitions of applied stress and applied strain 
for a damaged cross-ply laminate having n plies, are of the following form 

t a t a t
t T T t

t A T A T

ˆ ˆ
M M Tˆ ˆE E E E E

σ ν ν ν ηε = − σ − σ − − + α ∆ ,                                (9) 

a A A A
t T T A

A A A A T

ˆ ˆ
M M Tˆ ˆE E E E E

ν ν ν ησε = − σ + − σ − − + α ∆�
,                         (10) 

t A T T T
T t T T

T A T A T

ˆ ˆ
M M Tˆ ˆE E E E E

ν ν σ ν ηε = − σ − σ + − − + α ∆�
,                          (11) 

a A T A
t T T A

A A A A A

ˆˆ ˆ ˆ Mˆ ˆM Tˆ ˆ ˆ ˆ ˆE E E E E
ν ν ν δε = − σ − σ − σ + − + α ∆ ,                         (12) 

t A T A T
T t T T

T T T A T

ˆˆ ˆ ˆ Mˆ ˆM Tˆ ˆ ˆ ˆ ˆE E E E E
η η η δε = − σ − σ − σ − + + α ∆ ,                           (13) 

which defines the various thermo-elastic constants that characterise the properties of a 
damaged cross-ply laminate subject to combined in-plane biaxial loading, out-of-plane 
through-thickness loading and biaxial bending. In (9-13), ∆T is the temperature 
difference defined by ∆T = T − T0, where T is the current temperature of the material, and 
T0 is the ‘manufacturing’ temperature at which the strain is zero and the material is 
everywhere stress-free, with no internal or imposed external stresses and displacements. 
 
The stress-strain-temperature relations of the ith ply in the laminate are assumed to be of 
the following linear orthotropic form 

i i
i i i it a t
t T ti i i

t A T

      + T
E E E
σ ν νε = − σ − σ α ∆ ,                                         (14) 

i ii
i i ia A

t T Ai i i
A A A

    +    + T
E E E
ν νσε = − σ − σ α ∆ ,                                     (15) 

i t A T
T t T

T A T

      +  + T
E E E
ν ν σε = − σ − σ α ∆ ,                                     (16) 

where ε t
i , iε  and i

Tε  are the through-thickness, axial and transverse in-plane strains. The 

in-plane axial and transverse stresses in the plies are denoted by i i
Tand  σ σ  while the 

through-thickness stress has the same value σ t  in all the plies of the laminate, and in the 
homogenised equivalent laminate.  The parameters E, ν  and α  denote the Young's 
modulus, Poisson's ratio and thermal expansion coefficient respectively. The thermo-
elastic constants E, ν  and α  are allowed to have different values in each of the plies of 
the equivalent laminate so that the analysis can be applied to hybrid laminates where the 
plies of a multiple-ply laminate are made of different materials. The upper case subscripts 
A and T are attached to axial and transverse thermo-elastic constants to denote that they 
refer to in-plane stresses and deformation while the corresponding lower case subscripts 
denote thermo-elastic constants that involve out-of-plane stresses and deformations. Each 
ply has been assumed to be orthotropic so that twelve thermo-elastic constants are 
required to characterise linear behaviour when the three shear moduli are included (not 
shown above). It should be noted that the form of the stress/strain relations (14-16) has 
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assumed that the axial direction of each ply is oriented in the direction of the fibres in the 
0o plies of the laminate. If the 0o and 90o plies of the laminate are made of the same 
material, then for the 0o plies 

0 0 0 0 0 0
t A T t A a

0 0 0
t A T

E   , E    ,   E    ,   ,    ,       ,

  ,    ,       ,

= = = ν = ν = ν =

α = α = α =
t A T t A a

t A T

E E E ν ν ν
α α α

 

where E , E , E , , , ,  t A T t A a t A Tν ν ν α , α αand  are the thermo-elastic constants of the 
plies of the composite that can be measured values. For the 90o plies the following 
identifications must be made 

90 90 90 90 90 90
t A T t a A a

90 90 90
t A T

E   , E    ,   E    ,   ,   /  ,       ,

  ,    ,       ,

= = = ν = ν = ν =

α = α = α =
t T A A T A T

t T A

E E E E Eν ν ν
α α α

 

The above approach has been used to investigate ply crack formation in cross-ply 
laminates [2, 3, 6-8]. A methodology for extending this approach to general balanced 
laminates will now be described. The laminate must be balanced so that twisting 
deformations are avoided, but it can be unsymmetric. 
 
2.3  An homogenisation methodology 
As detailed solutions are available only for the case of multiple-ply cross-ply laminates 
subject to combined in-plane biaxial loading and out-of-plane bending, it is necessary to 
develop an homogenisation technique for undamaged laminates that will replace balanced 
off-axis plies in a general laminate by an equivalent single 0o ply having properties that 
match the effective properties of the off-axis plies that have been replaced using the 
homogenisation technique. The stress-strain relations for an off-axis ply in terms of global 
coordinates, where the axial direction corresponds with fibre direction of the 0o plies in 
the laminate, are given by  

i i i ii i i i i i
xx xx yy zz yz 111 12 13 14          T ,g g g gε = σ + σ + σ + σ + α ∆                             (17) 

i i i ii i i i i i
yy xx yy zz yz 212 22 23 24          T ,g g g gε = σ + σ + σ + σ + α ∆                            (18) 

  i i i ii i i i i i
zz xx yy zz yz 313 23 33 34          T , g g g gε = σ + σ + σ + σ + α ∆                            (19) 

i i i ii i i i i i
yz xx yy zz yz 414 24 34 442           T ,g g g gε = σ + σ + σ + σ + α ∆                            (20) 

i i i i i
xy 11 xy 12 xz  a   a  ,ε = σ + σ                                              (21) 
i i i i i
xz 12 xy 22 xz  a   a  .ε = σ + σ                                              (22) 

 
The various coefficients appearing in (17-22) are defined, in terms of ply properties 
referred to local coordinates, in reference [8]. It is shown in this reference how the 
effective properties of any symmetric laminate may be found, which are defined by the 
following global stress-strain relations 

t a t
t T t

t A T

   T
E E E
σ ν νε = − σ − σ + α ∆ ,                                      (23) 

a A
t T A

A A A

   T
E E E
ν νσε = − σ + − σ + α ∆ ,                               (24) 

t A T
T t T

T A T

       T
E E E
ν ν σε = − σ − σ + + α ∆ .                                (25) 
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The stress-strain relations (23-25), where the over-bar denotes the homogenised 
properties, are identical in form to those given by (14-16).  It is thus entirely feasible to 
replace undamaged off-axis plies in a general laminate by 0o plies having equivalent 
properties specified in (23-25). It is emphasised, however, that this is not the case when 
some of the plies might be damaged due to ply cracking. 
 
2.4  Reduced stress-strain relations for constrained triaxial loading 
On solving (12) and (13) for M and MT and substituting into the remaining damage-
dependent stress-strain relations (9-11), the following reduced stress-strain relations are 
derived of the same form as those for a cross-ply laminate subject only to triaxial 
loading, without shear or bending  

a t t a t
t t T T T A T t

t A T

ˆ ˆˆ ˆˆ ˆ ˆ ˆ T
E E E

ν η σ ν ν� � � �ε = ε + ε + δ ε + ε + δ ε = − σ − σ + α ∆	 
 	 
Λ Λ
� �

� �
� � �

 ,             (26) 

aA A A
T T T A t T A

A A A

ˆ ˆˆ ˆˆ ˆ ˆ ˆ T
E E E
νν η νσ� � � �ε = ε + ε + δ ε + ε + δ ε = − σ + − σ + α ∆	 
 	 
Λ Λ
� ��

� �
� � �

 ,          (27) 

tT T A T
T T T T T A t T

T A T

ˆ ˆˆ ˆˆ ˆ ˆ ˆ T ,
E E E
νν η ν σ� � � �ε = ε + ε + δ ε + ε + δ ε = − σ − σ + + α ∆	 
 	 
Λ Λ
� ��

� �
� � �

          (28) 

with                                         � �
�

�
δ δΤ Α= E

E
T

A

,          Λ = −1 � �δ δΑ Τ  ,                                (29) 

where the reduced strains tε� , ε�  and Tε�  can be interpreted as strains for a damaged 
laminate, subject to triaxial loading and constrained so that bending strains are zero, and 
where the reduced thermoelastic constants are defined by  
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A
~
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    ~ � � � � � � � �α α ν δ α α + η α δ αt t a T T A t T A A= + + +1
Λ � 	 � 	  ,      

  ~ � � � � � � � �α α ν δ α α + η α δ αA A A T T A A T A A= + + +1
Λ � 	 � 	  , 

~ � � � � � � � �α α ν δ α α + η α δ αT T T T T A T T A A= + + +1
Λ � 	 � 	  . 

The corresponding reduced stress-strain relations for undamaged laminates are written: 
~

~
~
~

~
~

~ε ν ν αt
o a

o
t
o

t
o= − −σ σ σ + ∆t

t
o

A
o

T
o TE E E

T ,                                     (30) 



 6

o o
o a A

t To o o
A A A

T ,
E E E

ο
Α

ν νσε = − σ + − σ + α ∆
� �

� �
� � �

                              (31) 

o o
o ot A T

to o o
T A T

T ,
E E EΤ Τ
ν ν σε = − σ − σ + + α ∆
� �

� �
� � �

                                 (32) 

where a superscript ‘o’ denotes that the strains and laminate properties refer to their 
values for the undamaged state of the laminate.  

2.5  Fundamental inter-relationships between thermo-elastic constants 
By considering the conditions for ply crack closure during uniaxial loading in the axial, 
transverse and through-thickness directions, it can be shown [8] that many inter-
relationships between the thermoelastic constants of a damaged laminate can be derived.  
First of all define the damage parameter 

o
A A

1 1
D

E E
= −�
� �

.                                                  (33) 

It has been shown [8] that the thermo-elastic constants for a damaged laminate are 
related to those of the corresponding undamaged laminate according to the following 
simple relations 

( )2 2
o o o

t t A A T T

1 1 1 1 1 1
k D D , k D

E E E E E E
′− = , − = − = ,

  
� �� � �

� � � � � �
              (34) 

o oo
t t a aA A
o o o
T T A A A A

k k D k D k D
E E E E E E
ν ν ν νν ν′ ′− = , − = , − = ,
� � � �� �

� � � �� � �
� � � � � �

               (35) 

o o o
t t 1 A A 1 T T 1k k D k D k k D′α − α = , α − α = , α − α =� � � � �� � �� � � � � � .             (36) 

The undamaged laminate constants 1k , k and k′� � �  are defined by 

o o o o o o o
A A T A A T A

1 o o o
A T A

o o o o o
A a t A T

o
A

E  + B   C E B  E / E
k  , k   ,

1  B E 1  B

E A  E / E B
k   =  ,

1  B

�� �α α − − ν	 
 �= =
− ν − ν �

�
− ν − ν �′ �− ν �

� � � � � ��
� �

�� �

� � �� �
�

�

             (37) 

where the parameters A, B and C are laminate constants defined in reference [8, eq.(39)].   

2.6  Gibbs free energy for a cracked laminate subject to multi-axial bending 
It has been shown [7], for the case of uniform ply crack densities in one or more of the 
90o plies of the laminate, that the Gibbs free energy (equivalent to the complementary 
energy) per unit volume of laminate (averaged over a region V occupied by the 
laminate) may be expressed in the form 

[ ]2 o o1
0 c T 0 T2

ˆ ˆ ˆ ˆg g D s F( , ) F ( , ) ,− = − − σ − ε ε + ε ε�                    (38) 

where g0  is the value of g  for an undamaged laminate, where t Ts k k′= σ + σ + σ� �  is 
an effective stress, and where σ c  is the crack closure stress for uniaxial in-plane loading 
constrained so that there is no bending, and where 

( ) ( )
( ) ( )

T A T T T T T A A T

o o o o o o o o o o o o
0 T A T T T T 0 A T

0

1 ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆF( , ) E E , 1 ,
2

1 ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆF ( , ) E E , 1 .
2

ο ο
Τ Α

�� �ε ε = ε ε + δ ε + ε ε + δ ε Λ = − δ δ �	 
Λ �
�

� � �ε ε = ε ε + δ ε + ε ε + δ ε Λ = − δ δ
	 
Λ ��

  (39) 
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2.7  Predicting damage formation 
Consider the special case where, during the formation of every ply crack, the fracture 
energy for ply crack formation has a unique value 2γ . The first objective is to 
determine the conditions for which it is energetically favourable for an array of equally 
spaced ply cracks having density ρ0  to form quasi-statically in an undamaged laminate 
subject to fixed applied loads and temperature. For a macroscopic region V of the 
laminate, energy balance considerations and the fact that kinetic energy is never 
negative, lead to the following criterion for crack formation, involving the change of 
Gibbs free energy G∆ (equivalent to complementary free energy) having the form 

∆Γ ∆  +     <   0G  ,                                                  (40) 
where the energy absorbed in a macroscopic volume V of laminate by the formation of 
the new ply cracks is given by 

∆Γ Γ= =V V
h

h
2 0

90γ ρ ( )

 .                                            (41) 

In (40), the parameter Γ denotes the energy absorbed per unit volume of laminate during 
the formation of new ply crack surfaces in the 90o plies that have led to the initial 
damage state denoted by the ply crack density ρ0 , and 2 90h ( )  is the total thickness of the 
90o plies in which the ply cracks have formed.  It then follows that the first ply cracking 
stress 1s  may be determined from the following inequality  

( )
(90)

21 c 1 1 0 0 0
0 T 0 0 T

2 h1 ˆ ˆ ˆ ˆD( ) s F( , , ) F ( , )
2 h

γρρ − σ + ε ε ρ − ε ε >  .                    (42) 

Subsequent progressive ply crack formation is predicted by applying successively, for 
values i = 1, 2, … , the inequality 

[ ]( )
i 1 (90)

2i 1 c i 1 i 1 i i 0
i 1 i T i 1 T i

2 h1 ˆ ˆ ˆ ˆD( ) D( ) s F( , , ) F( , , )
2 h

+
+ + +

+ +
γρρ − ρ − σ + ε ε ρ − ε ε ρ >  .    (43) 

It has been shown [8] that the approach described above does not provide any information 
that indicates how the thermo-elastic constants depend upon ply crack density. A detailed 
stress analysis is required to provide this information (see [6]). 
 
3.  Example predictions 
A quasi-isotropic [45/-45/0/90]s laminate is considered, having ply thickness d, that is to 
be subjected to combined in-plane biaxial loading and out-of-plane biaxial bending in 
the presence of thermal residual stresses, where anticlastic bending is taken into 
account.  One half of the symmetric laminate considered is shown in Figure 1 together 
with two options for homogenising the plies that do not have a 90o orientation. For 
Model 1 shown in Figure 1, the o45±  plies on each side of the laminate are replaced by 
homogenised plies of thickness 2d whose stress-strain relations will be of the form (23-
25).  For Model 2 shown in Figure 1, the o o0 and 45±  plies on each side of the 
laminate are homogenised into plies of thickness 3d.  The configurations shown in 
Figure 1 for Models 1 and 2 can be analysed using the methods described in Section 2.  
 
A key issue is how well the new model behaves when compared with other solution 
techniques for the special case when there are no bending loads.  The selected test 
subjects the models, for typical CFRP and GRP laminates, to uniaxial loading without 
bending or shear, for the case when the stress-free temperature has the value 

oT 85 C∆ = − . Figures 2 and 3 show a comparison of results for CFRP and GRP 
laminates, respectively. 
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Figure 1: Diagram illustrating two possible homogenised models of a laminate. 
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Figure 2: Comparison of predictions for a typical CFRP laminate using various models. 

 
Table 1: First ply cracking for the CFRP laminate. 

Model 
0ρ (/mm) ε (%) σ (GPa) 

Actual 0.729904 0.9218 0.4879 
Model 1 0.729904 0.92945 0.4920 
Model 2 0.941764 0.9713 0.51325 
Model 1 (Bend) 0.729905 0.9297 0.4932 
Model 2 (Bend) 0.941762 0.9774 0.5161 

 
The software system PREDICT [9], based on analysis given in reference [8] and 
associated papers and assuming a zero standard deviation for the fracture energies 
having a precise mean value taken as 150 J.m-2 for both CFRP and GRP laminates, has 
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been used to generate the results in Figures 2 and 3 that are shown as continuous lines 
with open symbols.  The new model for bending deformation developed in this paper 
has been used to determine the results shown as closed symbols.  Clearly there is 
extremely good agreement between the stress-strain curves predicted, for both CFRP 
and GRP laminates, by the various models, validating the new homogenisation model 
for the special case when bending deformation is absent.  There are, however, some 
differences that can be more easily identified by considering the axial first ply cracking 
stresses σ , axial strains ε  and initial crack densities 0ρ , which are given in Tables 1 
and 2.  The ply cracking stresses and strains are highly sensitive to the ply crack density 
and the six decimal places given in Tables 1 and 2 are in fact significant. 
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Figure 3: Comparison of predictions for a typical GRP laminate using various models. 

 
Table 2: First ply cracking for the GRP laminate. 

Model 
0ρ (/mm) ε (%) σ (GPa) 

Actual 0.693854 0.7974 0.1755 
Model 1 0.693854 0.8080 0.17795 
Model 2 0.827335 0.8253 0.1809 
Model 1 (Bend) 0.693853 0.8062 0.1784 
Model 2 (Bend) 0.827335 0.8249 0.1818 

 
It is seen that when the 0o plies are included in the homogenisation procedure (as for 
Model 2), the initial ply crack density is significantly different to that for the other 
cases.  For the homogenisation leading to Model 1, the results are very similar to those 
obtained for the actual laminate where homogenisation has not been used.  It is deduced 
that any homogenised approach should handle discretely the 0o plies in a laminate.  It 
remains now to provide some results for an example illustration of progressive ply 
cracking in a CFRP quasi-isotropic laminate that is subject to complex proportional 
loading such that 

o 2
t T T0, S, 0.2S, M 0.3S, M 0.1S, T 85 C, 2 150 J.m ,−σ = σ = σ = = = ∆ = − γ =  

where applied stresses are measured in GPa (i.e. kN.mm-2), and where applied bending 
moments per unit cross-sectional area are measured in kN.mm-1.  Table 3 shows the 
results obtained, for the axial stresses σ , axial strain ε  and the bending curvatures ε̂  
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and Tε̂ , using Model 1 of the new homogenisation model, which are such that ply crack 
densities ρ  at each successive stage progressively double.   
 

Table 3: Progressive ply cracking under complex loading in a CFRP laminate. 
ρ (/mm) σ (GPa) ε (%) ε̂ (%) (/mm) Tε̂ (%) (/mm) 

0.728654 0.490 0.868 4.276 -1.705 
1.457308 0.499 0.890 4.353 -1.736 
2.914616 0.612 1.104 5.346 -2.133 
5.829232 1.138 2.064 9.938 -3.966 

 
Work is in progress to extend the model so that a random distribution of fracture 
energies can be considered (as in PREDICT [9]), leading to progressive ply crack 
formation where cracks form one at a time. 
 
4.  Conclusion 
 
On the basis of the limited results presented in this paper, it is concluded that the 
proposed homogenisation method (using Model 1) is a good basis for predicting ply 
crack formation in general laminates subject to complex loading involving bend 
deformation, in addition to in-plane biaxial loading and thermal residual stresses. 
 
Acknowledgement 
This work was undertaken as part of the Materials Measurement Programme of the 
Department of Innovation, Universities and Skills, UK. 
 
REFERENCES 
1. Li S, Reid S R and Soden P D, “A finite strip analysis of cracked laminates”, Mech. 

Mater., 1994; 18: 289-311. 
2. McCartney L N and Pierse C, “Stress transfer mechanics for multiple-ply laminates 

subject to bending”, NPL Report CMMT(A)55, February 1997. 
3. McCartney L N and Pierse C, “Stress transfer mechanics for multiple ply laminates 

for axial loading and bending”, Proc. 11th Int. Conf. on Composite Materials, Gold 
Coast, Australia, July 14-18, 1997, vol. V, 662-671. 

4. Smith P A and Ogin S L, “On transverse matrix cracking in cross-ply laminates 
loaded in simple bending”, Composites Part A, 1999; 30: 1003-1008. 

5. Smith P A and Ogin S L, “Characterisation and modelling of matrix cracking in a 
(0/90)2s GFRP laminate loaded in flexure”, Proc. Roy. Soc. Lond., 2000; A456: 
2755-2770. 

6. McCartney L N, “Stress transfer mechanics for multiple ply cross-ply laminates 
subject to bending”, summary in Proceedings of 6th International Conference on the 
Deformation and Fracture of Composites, Manchester, April 2001, pp. 57-66.   

7. McCartney L N and Byrne M J W,  “Energy balance method for predicting cracking 
in cross-ply laminates during bend deformation”, Proc. 10th Int. Conf. on Fracture 
(ICF-10),  Advances in Fracture Research, Honolulu, 2-6 Dec. 2001. 

8. McCartney L N, “Physically based damage models for laminated composites”, 
Proc. Instn. Mech. Engrs., 2003; 217, Part L: J. Materials, Design & Applications: 
163-199. 

9. Software system ‘PREDICT’ which is a specific module of CoDA. 
      ( see http://www.npl.co.uk/npl/cmmt/cog/coda.html ) 


