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ABSTRACT 
In this paper we develop a homogenisation model for nonlinear viscoelastic materials.  The first step of the 
approach is to introduce a proper linearisation of the nonlinear phases.  Secondly, the correspondence 
principle is used to solve the homogenisation problem.  Finally, the inverse Laplace transform provides the 
time domain mechanical properties of the homogenised material.  The predictions of this homogenised 
model were compared against 3D finite element simulations and good agreement was observed. 
 
1. INTRODUCTION 
 

The homogenisation approach allows the global mechanical behaviour of 
heterogeneous materials to be predicted from the knowledge of the microstructure 
morphology and the mechanical behaviour of each constituent phase.  The approach has 
been widely applied to linear elastic materials with reasonable success (see [1] for a 
review).  It has also been extended to nonlinear behaviour (plastic, elastoplastic, etc.) by 
linearisation of each constituent’s behaviour law (see [2] for a review).  Linear 
viscoelastic materials can also be homogenised using the correspondence principle and 
Laplace-Carson transforms (see [3] for a review).  In both cases, the nonlinear or time 
dependent problem, with an appropriate treatment, is transformed into a problem that can 
be solved as a linear elastic one.  This treatment is known as linearisation. 

In this paper, we model the behaviour of a glass bead reinforced polypropylene.  
The glass is assumed to be linear elastic and isotropic while the polypropylene is 
nonlinear viscoelastic and also isotropic.  The mechanical properties of the constituents 
are first presented in the next section.  Then, the linearisation procedure is presented and 
implemented into the Mori-Tanaka scheme.  The predictions of this model are compared 
with FE simulations of the microstructure. 
 
 
2. MECHANICAL BEHAVIOUR OF THE CONSTITUENT PHASES 

 The polypropylene is assumed to obey the well known Schapery behaviour law, 
generalised in 3D according to Zhang et al. [4], of the form: 
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where D0 is the instantaneous compliance, g0, g1, g2 and a are scalar functions of an 
equivalent stress σe, ∆D(t) is a linear viscoelastic creep compliance and the tensors eS  
and cS are fourth order tensors containing the elastic and creep Poisson’s ratios.  The two 
tensors have the form: 
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In this study, it is assumed that these two Poisson’s ratios are constant.  The 

equivalent stress is given by: 
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where I1 and I2 are the first and second stress invariants.  The creep compliance is chosen 
to be a Prony series of the form: 
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The various Schapery parameters were calculated according to [5] and the 

detailed results can be found in [6].  It was found that five terms in the Prony series were 
needed to model the polypropylene with acceptable accuracy.  The numerical values for 
these parameters are presented in Table 1 along with the linear elastic properties of the 
glass bead reinforcements. 
 
 

Table 1 – Mechanical properties of the constituent phases 
 
Glass (linear elastic, isotropic) 

k bulk modulus (GPa) µ shear modulus (GPa)  
57.5 26.538  

 
Polypropylene (nonlinear viscoelastic, isotropic, Schapery) 

D0 (MPa) νe νc J1 (MPa-1) ϕ1 (sec) 
4.95×10-4 0.3 0.45 7.971×10-5 3.125 
J2 (MPa-1) ϕ2 (sec) J3 (MPa-1) ϕ3 (sec) J4 (MPa-1) 
3.678×10-5 31.25 2.896×10-5 100.0 7.142×10-5 

ϕ4 (sec) J5 (MPa-1) ϕ5 (sec) g0(σe) 



312.5 3.076×10-5 600.0 1+9.19×10-4×(σe–2.5)2×H(σe–2.5) 
g1(σe) g2(σe) a(σe) 

1 + 1.03×10-3×(σe–15)2×H(σe–15) 1 + 7.92×10-3×σe
2 1 

H(σe) is the Heaviside step function  
3. LINEARISATION AND HOMOGENISATION PROCEDURES 
 

Before treating the case of nonlinear viscoelasticity, we discuss  the linearisation 
procedures for nonlinear elastic materials, for illustration purposes. 
 The goal of linearisation is to create a fictive composite material (or comparison 
material) where all the constituents are linear elastic but has the same mechanical 
response for a given load.  For example, if NL'Σ  is applied to the nonlinear composite and 
the resulting average strain NL'Ε  results, the objective is to find a linear composite 
material that, when NLL '' Σ=Σ  is applied, NLL '' Ε=Ε  is obtained.  Of course, if ''' Σ≠Σ  is 
applied, the linear comparison material is different.  The main problem is that we do not 
know  NL'Ε  and thus it is not possible in general to check if NLL '' Ε=Ε  is met.  However, 
variational principles can be used to either bound or approximate NL'Ε .  The results of 
such approaches lead to linearisation procedures around a reference loading level.  We 
clarify these concepts below. 
  In this paper, we have chosen to use the affine linearisation procedure suggested 
by Masson et al. [7].  The comparison material is composed of linear elastic materials 
with tangent properties where stress free deformation or strain free stresses are added.  
An example of stress free deformation is a strain due to temperature variation.  Therefore, 
the comparison material can be related to a thermo elastic material.  For example if the 
stresses are applied, the tangent compliance of the affine formulation is defined by: 
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where tgt

rM  is the tangent compliance of a given phase (matrix or reinforcements), v  is a 
potential from which the strains are derived and rσ  is the average stress in a given phase.  
The stress free deformation 0

rε   is then calculated so that: 
 

0:( rr
tgt
rr

v
ε+σ=σ

σ∂
∂ M)   (6) 

 
This latter condition can be graphically represented in figure 1.  In this particular case, 
the linearisation procedure is defined by equations (5,6) and the reference level is the 
mean stress in a given phase. 
 These results which are valid for nonlinear elasticity must now be extended to 
account for nonlinear viscoelasticity.  Instead of linearising around the mean stress, the 
linearisation has to be done around the mean stress history.  A tangent linear viscoelastic 
material is sought so that: 
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where M(t,tn) is a linear viscoelastic creep compliance, ε0 a stress free deformation 
history, nt  is the time at which the solution is sought, SCHAε  is the strain of the Schapery 
material and LINε  is the strain of the linearised material. 
 The definition of a tangent linear viscoelastic compliance is not as straightforward 
as in the case of materials described by a potential.  It involves some development of the 
functional theory and a simple way of calculating it is not possible.  We have chosen to 
use the approximate tangent linear viscoelastic compliance suggested by Pouya and 
Zaoui [8] which defines tgt

rM  so that: 
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In this study, we have chosen to use a Maxwell solid to linearise the Schapery 

material. The behaviour law of such a solid is given by: 
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where the SPH and DEV subscripts refer to the spherical and deviatoric parts of a tensor, 
the sph(.) and dev(.) operators extract the spherical and deviatoric parts of a tensor, k-1 
and   µ-1 are the bulk and shear compliances and α, β, γ and ϕ are material constants. The 
system of equations introduced by the combination of equations (9 - 12) leads to 2 
independent equations for 4 unknowns.  To close the system, an additional constraint 
must be added.  In our case, we have chosen one of the following constraints: 

 ε 

 σ 

 ε0 

 σn 

Figure 1 – Linearisation example.  Solid line: real material; dotted line: 
linearised material 
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Constraint (13b) comes from the condition of thermodynamic stability.  It should be 
noted here that condition (8) can lead to an anisotropic material.  In order to obtain 
analytical solutions of the homogenisation problem, tgt

rM  is approximated by ISO
rM  

which is isotropic.  ISO
rM  is calculated so that condition (8) is met for at least one 

component of the strain tensor. 
So, for our particular case, the linear viscoelastic material is calculated by the 

system of equations formed by conditions (8) and (13a).  If the solution leads to constants 
that satisfy condition (13b), the constants are kept.  If condition (13b) is not met, the 
linearisation is done by imposing conditions (8) and (13b).  Once MISO has been 
identified, ε0 is calculated according to (7). 

 
3.1 Homogenisation 

With the linearisation described in the previous section, the homogenisation 
problem becomes a linear viscoelastic problem where the various phases of the material 
are subjected to a stress free deformation history.  Thanks to the Laplace-Carson 
transforms, this problem can be treated as a linear elastic problem with a stress free 
deformation. Since the simulated material is a dominant phase (i.e., matrix) in which 
randomly distributed spherical reinforcements are embedded, the Mori-Tanaka scheme 
[9,10] has been chosen for the homogenisation.  This type of microstructure leads to a 
globally isotropic material, allowing treatment of the deviatoric and spherical parts 
separately.  For this microstructure, the homogenised bulk and shear compliances are [11]: 
 

{ } [ ] [ ]







+−+−
+−+−

+−+−
+−+−

== −−

11010010

0101001

11010010

010100111

))()(1(
))()(1(,

))()(1(
))()(1(~,~~

µµµζµµ
µµµζµ

ϖ
ϖµ

cc
cc

kckkkck
kckkkckS   

)43(5
)2(6

43
3

00

00
0

00

0
0 µ

µζ
µ

ϖ
+
+

=
+

=
k
k

k
k   (14) 

 
where 1~−k and 1~−µ are the homogenised bulk and shear compliances, the subscripts 0 and 
1 refer to the matrix and the reinforcement respectively and c is a volume fraction.  When 
the various phases are subjected to a stress free deformation, the resulting macroscopic 
strain is given by: 
 

00 : i
T
i εBE =  (15) 

 
where the . operator calculates the spatial average of its argument, B  is the so-called 
stress concentration tensor and subscripts i refers to each phase.  In this specific situation, 
the stress free deformation in the reinforcement is zero (since no linearisation of the 
reinforcement is necessary), (15) becomes: 
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where 0B  is given in short hand Hill’s notation (i.e. decomposed into spherical and 
deviatoric parts).  The introduction of stress free deformations in the matrix induces 
stresses in the reinforcement and in the matrix.  This induced stress is given by: 
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For the complete solution of all quantities involved in this homogenisation 

problem, refer to [11].  By the superposition principle, the stress in the matrix is the sum 
of the stress induced by the free stress deformation and the stress due to the mechanical 
loading.  The stress concentration tensor allows the microscopic stress to be related to the 
macroscopic stress so that: 
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This linear viscoelastic homogenisation problem, with a history of stress free 

deformation is solved as follows.  Suppose that the stress history in the matrix is known 
over ],0[ 1−nt  and the solution is sought at nt .  The first step is to assume a stress tensor at 

nt  and perform the linearisation.  The Laplace-Carson transforms are applied to the 
matrix and reinforcement behaviour laws.  The symbolic moduli are introduced in the 
homogenisation equations and the symbolic homogenisation tensors are obtained.  The 
inverse Laplace-Carson transform is applied to these tensors in order to obtain their time-
domain expressions.  The stress at time nt  is calculated in the matrix.  If this calculated 
stress is equal to the assumed stress, the solution has converged.  If not, further iterations 
are conducted.   At the end, the global response of the composite is given by these 
convolution integrals: 
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4. FINITE ELEMENT MODEL 

In order to verify the theoretical model presented above, 3D numerical finite 
element simulations of the deformation of polymer composites with random arrangement 
of inclusions were carried out. The generated microstructures were placed in a box 10 x 
10 x 10 mm, which was then subject to a uniaxial loading. In order to generate a 
microstructure with random arrangement of spherical particles, the coordinates of each 
particle were calculated using the uniform random number generator. Each coordinate 
was produced independently, with another random number seed. After the coordinates of 
a first particle were defined, the coordinates of each new  particle were determined both 
by using the random number generator, and from the condition that the distance between 
the new particle and all adjacent particles is no less than 0.2 of the given particle radius. 
If the condition is not met, the seed of the random number generator is changed, and the 
coordinates of the new particle are recalculated. In order to avoid the boundary effects, 
the distance between a particle and borders of the box is required to be no less than 0.1 
particle radius.   See figure 2. 

The maximum number of particles that was possible to account for was 15 
(restriction imposed by the required memory to perform the calculations).  A UMAT 

Figure 2 – 3D FE mesh of 15 glass beads randomly distributed into the matrix (not shown 
on the picture) 



subroutine has been written for the Schapery material and the properties used for the 
glass can be found in table 1. 

5. MODEL / FINITE ELEMENT COMPARISONS 

In order to assess the validity of the model, the following aspects were studied: 1) 
Effect of reinforcement volume fraction and contrast and 2) Sensitivity to the loading rate.  
For each aspect, the predictions from the model and from the FE simulations were 
compared for uniaxial loading.  For each simulation, the stress history was a constant 
loading rate from 0 to 20 MPa. 

 
Effect of volume fraction and contrast 
 

Figure 3 shows the comparison between the FE results and the model developed 
in this paper.  For all the volume fractions of reinforcements, the agreement is quite good. 

The sensitivity of the model to the mechanical properties contrast is studied by 
simulating a porous material of the same volume fractions as the reinforced one.  Figure 4 
shows the stress – strain curves for various volume fractions of pores.  It should be noted 
that convergence problems were encountered with the FE simulations for the 30 % void 
content and therefore the results are not presented for the whole stress-strain curve.  
These numerical difficulties are still under investigation.  For the simulated cases, the 
agreement is good. 
 
 
Effect of the loading rate 

 
Figure 5 shows the stress – strain curves obtained for a 20% glass beads 

reinforced polypropylene loaded at different stress rates.  The load histories were a 
constant stress rate from 0 to 20 MPa.  The figure shows that the model takes into 
account the material sensitivity to the load rate since a faster load rate leads to a stiffer 
material.  Here again the predictions given by the model agree well with the finite 
element simulations. 
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Figure 3 – Model and FE simulations of a 
tensile loading of 1 MPa / s for various 

volume fractions of glass bead 
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Figure 4 – Model and FE simulations 
of a tensile loading of 1 MPa / s for 

various volume fractions voids   



Figure 6 shows the strain predicted by the model for a stress of 25 MPa for 
various stress rates and volume fractions of reinforcement.  A logarithmic curve fit of the 
simulated data has been done for every volume fraction of reinforcement.  It can be 
observed that a stress rate variation has a greater effect on the strain at 25 MPa as the 
volume fraction of reinforcement decreases.  These tendencies are expected in a real 
material since as the volume fraction of linear elastic particles increases, the global 
behaviour of the composite tends towards the behaviour of an elastic material. 
 
 
6. CONCLUSION 

A homogenisation model for simulating the mechanical behaviour of a nonlinear 
viscoelastic material has been developed.  For the volume fractions and the loading 
simulated, this model provides acceptable results when compared with finite element 
simulations.  It has also been shown that the approximation M ≈ MISO is reasonable.  
However it is expected that the discrepancy in the results obtained with M and MISO will 
increase as the degree of nonlinearity increases. The limitations of such simplification 
must be studied.  In addition, a more refined calculation of MISO could be developed. 

The model takes into account the viscoelastic characteristics of the homogenised 
composite material.  It has been shown, for example, that the homogenised material is 
sensitive to the loading rate. 

Comparison of the model predictions vs FE simulations shows good agreement.  
This finding will be useful when experimental validation of the model will be conducted 
on real materials.  This observation decreases the number of factors that would cause any 
discrepancy between the model and the experiments. 
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